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Abstract

We characterize the property of an optimal 3 bracket piecewise linear tax
system adopting a non-welfarist objective, namely we consider inequality and
income polarization reduction objectives. When the elasticity of labour supply
is positive, the optimal tax schedule always entails an inverse U-shape relation-
ship between marginal tax rates and income brackets. However, quantitatively,
there are striking di¤erences in the optimal tax schedule depending on the spe-
ci�c distributive objective. When the objective is inequality, the last bracket
includes few tax payers (about the 98th percentile) and implies marginal tax
rates well above zero. When the objective is polarization the third bracket
includes a larger amount of tax payers (about the top quartile) and entails a
marginal tax rate equal to zero. In special case in which the elasticity of la-
bor supply is equal to zero, the optimal tax scheme when the objective of the
government is inequality reduction has only two brackets, with a marginal tax
rate equal to zero for the �rst bracket.
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1 Introduction

In this paper we adopt a non-welfarist approach and analyze how a piecewise linear tax
system should be designed in order to reduce income inequality or income polarization.
In line with Kanbur et al. (2006) a government is non-welfarist if its social wel-

fare function is de�ned on individuals�incomes instead of their utilities. Individual
preferences do not play a direct role into the social welfare, but still play a role in
the design of the optimal tax system in that they shape individuals� reactions in
terms of consumption and labour supply to di¤erent tax schemes. We assume that
the non-welfarist government maximizes, given a revenue requirement constraint, a
rank-dependent Social Evaluation Function (SEF ) de�ned on individuals� incomes,
which are linearly aggregated and weighted according to their position in the income
ranking. By suitable modi�cations of the positional weighting function, it is possible
to move within the same social evaluation model from evaluations based on inequality
to those relying on income polarization. Our focus on non-welfarist objectives is not
motivated by the fact that we regard them as superior with respect to the standard
social welfare function: we do not take any stand in the debate between welfarist
and non-welfarist approaches to social justice. As Kanbur et al. (1994 and 2018),
we simply think that the study of non-welfarist optimal taxation is interesting be-
cause, in many instances, the policy debate is de facto centred more around income
redistribution than around utilities and social welfare.
In our analysis we focus on piecewise linear tax system, which is the most com-

monly adopted tax schedule. Moreover, we restrict our attention to the case where
only three brackets are present, because, as we will show later, a tax scheme with
three brackets is the minimal set-up needed to highlight the di¤erent implications
of the two social objectives we consider, i.e. inequality reduction and polarization
reduction.
We show that redistributive objective matters as the properties of the optimal tax

schedule changes depending on whether the policy maker is inequality or polarization
sensitive. In particular we focus on marginal tax rate progressivity (regressivity),
i.e. the fact that marginal tax rates are increasing (decreasing) with income. We
label as convex a tax system which is never marginal tax rate regressive. We call
non-convex a tax system that for at least one level of income is marginal tax rate
regressive. With �xed labour supply, we show that the optimal tax system is convex
when the objective of the government is inequality reduction and non-convex with
reduced marginal tax rate for the upper income bracket when the aim of the gov-
ernment is polarization reduction. When individuals�reactions to taxation are taken
into account, the optimal tax system is always non-convex both for inequality and
polarization reduction. However, there is still a striking di¤erence between the two
distributive objectives and it relates with the size of the highest income bracket and
the reduced marginal tax rate which is applied to the part of income falling within
that bracket. More speci�cally, when the objective is inequality, the third bracket
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includes few tax payers (about the 98th percentile) and implies marginal tax rates
well above zero. When the objective is polarization the third bracket includes a larger
amount of tax payers (about the top quartile) and entails a marginal tax rate equal
to zero. In addition, when labour supply elasticity is large the optimal tax system
reducing polarization requires a sort of lump-sum taxation: all tax payers fall in the
third bracket, to which a zero marginal tax rate is associated.
Our paper is related to the literature on optimal income taxation. Many analysis

has been conducted in the welfarist tradition. Here, we are particularly interested in
those analysis that develop models of piecewise linear optimal taxation. Sheshinski
(1989) shows that the optimal piecewise linear tax system is convex in the sense that
higher tax rates are associated with higher income brackets. Slemrod et al. (1994)
argue that in his analysis Sheshinski ignored the discontinuity in the tax revenue
function and they use numerical simulation to show that the optimal tax structure
could be non-convex. Apps et al. (2014) show that, the results of Slemrod et al.
(1994) are not robust to changes in the distribution of wages used for the numerical
analysis: they �nd that under assumptions that better describe the current wage
distribution, the tax system is essentially convex unless when labour elasticities are
high. Using a microeconometric model of labour supply, Aaberge et al. (2013) also
�nd that the optimal piecewise tax system is convex. Recently, Andrienko et al.
(2016) analyse the e¤ect of wage/income inequality on the structure of a piecewise
linear tax system, showing that the higher the inequality, the more progressive the
tax system should be, with the highest marginal tax rate associated with the top 1%.
To the best of our knowledge, there are only few papers in the non-welfarist

tradition which deal with the issue of optimal taxation. In particular, Kanbur et al.
(1994 and 2018) study optimal income taxation when the objective of the government
is the reduction of poverty: while the �rst paper focuses on a fully non-linear income
tax, the second one considers the other extreme case, i.e. a linear tax.1

Our approach extends the existing literature on non-welfarist taxation, whose fo-
cus has been poverty alleviation, by looking at inequality and polarization reduction
objectives. Moreover, we consider the case of piecewise linear tax function which
is intermediate between the two polar cases of linear taxation and fully non-linear
taxation analysed in the non-welfarist literature. With respect to the welfarist liter-
ature on optimal piecewise linear taxation, we show if and how the shape of the tax
function is a¤ected by government�s objectives that di¤ers from the maximization of
a standard social welfare function de�ned on individual utilities.
The remainder of the paper proceeds as follows. Section 2 introduces the notion of

linear rank-dependent SEF and describes the two di¤erent weighting schemes adopted
in the paper to capture inequality and polarization reduction objectives. Section 3
formalizes the optimal tax problem faced by the non-welfarist government. Section 4

1Recently Saez and Stantcheva (2016) propose to evaluate tax reforms according to an alternative
approach based on a social evaluation model where individuals�net income are weighted di¤erently
according to the speci�c distributive view of the policy-maker.
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presents some theoretical results under the assumption of exogenous labour supply.
The case of endogenous labour supply is analyzed in Section 5 through the use of
numerical simulations. Section 6 concludes.

2 Setting

2.1 Rank-dependent social evaluation functions

To assess alternative taxation policies, we consider the family of linear rank-dependent
evaluation functions that aggregate individuals�net incomes weighted according to
their position in the income ranking.
Let F (y) denote the cumulative distribution function of income y of a population

with bounded support (0; ymax) and �nite mean � (F ) =
R ymax
0

y dF (y). The left
inverse continuous distribution function or quantile function, showing the income level
of an individual that covers position p 2 (0; 1) in the distribution of incomes ranked
in ascending order, is de�ned as F�1 (p) := inf fy : F (y) � pg. For expositional
purposes, in the remainder of the paper we will also equivalently denote with y (p)
the quantile function. The average income could then be calculated as � (F ) =R 1
0
F�1 (p) dp.
Consider a set of positional weights v (p) � 0 for p 2 [0; 1] such that V (p) =R p

0
v (t) dt, with V (1) = 1: A rank-dependent SEF where incomes are weighted ac-

cording to the individuals�position in the income ranking is formalized as

W�(F ) =

Z 1

0

v (p)F�1 (p) dp (1)

where v (p) � 0 is the weight attached to the income of individual ranked p. The
normative basis for this evaluation function have been introduced in Yaari (1987) for
risk analysis and in Weymark (1982) and Yaari (1988) for income distribution analysis
and recently have been discussed as measures of the desirability of redistribution
in society by Bennett and Zitikis (2015).2 This representation model is dual to
the utilitarian additively decomposable model. According to W� the evaluation of
income distributions is based on the weighted average of incomes ranked in ascending
order and weighted through transformations of the cumulated frequencies (namely
the individuals�position). The social evaluation expressed by (1) can be summarized
by the mean income of the distribution � (F ) and a linear index of "dispersion" Iv (F )
dependent on the choice of the weighting function v. This "abbreviated form" of social
evaluation3 is de�ned as Wv(F ) = � (F ) [1� Iv (F )] :

2See also Aaberge (2000), Aaberge et al. (2013) and Maccheroni et al. (2005).
3For general details see Lambert (2001).
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2.2 Weighting functions

The speci�c non-welfarist government�s objective is formalized by the particular form
of the weighting function � (p). We consider two di¤erent non-welfarist objectives
that combine the average income evaluation with di¤erent distributional objectives,
namely the reduction of inequality and the reduction of polarization.

2.2.1 Inequality sensitive SEFs

A non-welfarist government aimed at reducing inequality attaches to each quantile
F�1 (p) of the income distribution a weight according to the following function v (p) =
2 (1� p), which is consistent with the Gini index. Then, we can rewrite (1) as

W�(F ) =

Z 1

0

2 (1� p)F�1 (p) dp;

which can be further rewritten as W2(F ) = � (F ) [1�G (F )] ;where � (F )G (F ) de-
notes the absolute version of the Gini index that is invariant with respect to addition
of the same amount to all individual incomes.
Moreover, the weighting function consistent with the Gini index can be written

as

vG (p) =

�
1� [�2

�
1
2
� p
�
] if p � 1

2

1� 2
�
p� 1

2

�
if p � 1

2

: (2)

That is, to the weight 1 associated with the average income is subtracted the weight
associated to the absolute Gini index that captures the inequality concerns. The
weights in (2) are linearly decreasing in the individuals�position moving from poorer
to richer individuals (see panel (a) of Figure 1).
With a "non-traditional" interpretation of the absolute Gini index, inequality

could be measured by considering the di¤erence between incomes covering equal po-
sitional distance from the median weighted with linear weights that increase mov-
ing from the median position (p = 1=2) to the extreme positions 0 and 1. For in-
stance, take the incomes that are either t positions above the median and t posi-
tions below the median, the index considers the di¤erence between these incomes
F�1

�
1
2
+ t
�
� F�1

�
1
2
� t
�
and weights it with the weight 2t. That is

� (F )G (F ) =

Z 1

1=2

2

����12 � p
����F�1 (p) dp� Z 1=2

0

2

����12 � p
����F�1 (p) dp:

The weights attached to the income di¤erences increase as the position of the individ-
uals moves away from the median position. Therefore, any rank-preserving income
transfer from individuals above the median to poorer individuals below the median
reduces inequality in that it reduces the income distances between individuals cover-
ing symmetric positions with respect to the median. Rank-preserving transfers from
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richer to poorer individuals positioned on the same side with respect to the median,
also reduce inequality because it increases the income di¤erence between the incomes
that are closer to the median and decreases of the same amount the income di¤erence
of the incomes that are in the tails of the distribution. That is, the inequality index
gives lower weight to the income di¤erences between individuals closer to the median,
therefore the e¤ect for individuals that are more distant from the median is dominant
and inequality is reduced.

2.2.2 Polarization sensitive SEFs

When the non-welfarist objective is the reduction of polarization, the distributive
concern is for reducing inequality between richer individuals and poorer ones but not
necessarily reducing the inequality within the rich and within the poor individuals.
In line with the seminal works of Esteban and Ray (1994) and Duclos et al. (2004)
the polarization measurement combines two components: the isolation between eco-
nomic/social groups and the identi�cation between individuals belonging to a group.
The �rst component decreases if the distance between richer and poorer individuals
is reduced. In the case of the measurement of income bipolarization, the two social
groups are delimited by the median income. The higher is the degree of identi�ca-
tion within each group, the higher is the e¤ect of their isolation on polarization. In
this case the identi�cation decreases as more disperse is the distribution within one
group. Thus, reducing inequality between individuals that are on the same side of
the median increases their identi�cation and then increases the overall polarization.
Here, we adopt the bipolarization measurement model introduced in Aaberge and

Atkinson (2013).4 The associated SEF is rank-dependent with a weighting function
that can be formalized as:

vP (p) =

�
2p+ 1 if p � 1

2

2p� 1 if p � 1
2

; (3)

where weights vP (p) are linear and increasing both below and above the median and
exhibit a jump at the median, with higher (lower) weights below (above) the median
(see panel (b) of Figure 1). In line with the formalization presented for inequality
measurement, these weights can be written as

vP (p) =

�
1� f�[1� 2(1

2
� p)]g if p � 1

2

1� [1� 2(p� 1
2
)] if p � 1

2

; (4)

where the polarization component is subtracted from the weight 1 associated with
the average income.
We focus primarily on this weighting function as it constitutes the counterpart

4An alternative approach to the construction of polarization sensitive SEFs is presented in Ro-
driguez (2015).
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of the Gini weighting function for the (bi-)polarization measures. It is also possi-
ble to derive an associated abbreviated SEF where polarization reduces welfare for
a given average income level, i.e. WP (F ) = � (F ) [1� P (F )] ; with P (F ) denot-
ing a polarization index. An absolute polarization index can be formalized simi-
larly to the inequality index, by considering the di¤erence between the incomes with
equal positional distance from the median weighted with linear weights that decrease
moving from the median position (p = 1=2) to the extreme positions 0 and 1. For
instance, for the incomes that are either t positions above the median and t posi-
tions below the median, the index considers the di¤erence between these incomes
F�1

�
1
2
+ t
�
� F�1

�
1
2
� t
�
and weights it with the weight 1� 2t. That is

� (F )P (F ) =

Z 1

1=2

�
1� 2

����12 � p
�����F�1 (p) dp� Z 1=2

0

�
1� 2

����12 � p
�����F�1 (p) dp:

This representation guarantees that income transfers from richer to poorer individuals
on the same side of the median income increase polarization.5

An elementary normative implication of the weighting function (4)is that, in order
to maximize the welfare, redistribution should be from the individuals above the
median to those below. However, when tax schedules are set over few brackets de�ned
in terms of incomes and not positions, then the implications arising from moving from
an inequality reducing objective to a polarization reducing one are more subtle.
From Figure 1 it appears evident that the two weighting functions weight more

individuals below the median than those one above. However, for inequality (po-
larization) concerns the weight decreases (increases) for the individuals on the same
side of the median as their income increases. In the remainder of the paper we will
show how the optimal tax formula changes according to the choice of the weighting
function.

5The construction of this family of polarization indices is also consistent with the rank-dependent
generalization of the Foster�Wolfson polarization measure (see Wolfson, 1994) presented in Wang
and Tsui (2000). The main di¤erence between the two approaches is that the Wang and Tsui paper
normalizes the index by dividing it by the median instead of the mean income.
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Fig. 1: Weighting function for Gini and Polarization based SEF

3 Non-welfarist optimal piecewise linear taxation

Let (ti; y1; y2) the parameters of a three brackets piecewise linear tax system, where
ti denotes the marginal tax rate in the ith income bracket, with i = 1; 2; 3, while
y1 and y2 are the two income thresholds, with y1 < y2. These two thresholds are
such that p1 := supfp : y (p) = y1g and p2 := supfp : y (p) = y2g, with y (p1) = y1
and y (p2) = y2, where F (y1) = p1 and F (y2) = p2: The non-welfarist government
maximizes a rank-dependent SEF de�ned over individuals�net incomes

Wv =

Z 1

0

v (p) [y (p)� T (y (p))] dp; (5)

subject to the revenue requirement constraintZ 1

0

T (y (p)) dp = R (6)

where R represents the per capita revenue requirement, while T (y) denotes the three
brackets linear tax function, which is de�ned as follows

T (y) := t1y + (t2 � t1) �max fy � y1; 0g+ (t3 � t2) �max fy � y2; 0g : (7)

In our analysis the focus is only on the socially desirable mechanism that guarantees
to collect a given level of per capita revenue. That is, government transfers are not
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allowed and collected revenues are used to �nance public expenditures that do not
a¤ect neither the individual budget constraint nor their utility function. We consider
situations where gross incomes are unequally distributed across individuals and derive
results that hold under the assumption of bounded maximal marginal tax rate whose
admissible upper level is �� 2 (0; 1]:

4 The solution with �xed labour supply

The socially optimal taxation design is �rst illustrated under the assumption of ex-
ogenous �xed labour supply. This approach is in line with the literature on the
redistributive e¤ect of taxation pioneered by the works of Fellman (1976) Jakobsson
(1976) and Kakwani (1977).6 We derive the results for the three brackets piecewise
linear taxation in order to compare the e¤ects on taxation of an inequality reducing
sensitive SEF with the ones of a polarization reducing sensitive SEF.
The derivation of the solutions is illustrated in details in Appendix A both for

inequality sensitive and for polarization sensitive SEFs. Here, we summarize and
comment the main �ndings and the qualitative features of the optimal taxation design
that hold for any distribution of pre-tax gross income and for a large class of inequality
sensitive and polarization sensitive SEFs.

4.1 Inequality concerns

LetWI denote the set of all linear rank-dependent SEFs with decreasing non-negative
weights v(p): These SEFs are sensitive to inequality reducing transformations of the
distributions through rank-preserving progressive transfers from richer to poorer in-
dividuals. For instance, the Gini based social weighting function in (2) satis�es this
condition.
The set of all three brackets piecewise linear taxation schemes is denoted by T�� ,

with maximal marginal tax rate �� 2 (0; 1] s.t. R � �� � � (F ) ; then we can derive the
statement highlighted in the next proposition.

Proposition 1 A solution of the optimal taxation problem with �xed labour supply
for tax schedules in T�� maximizing SEFs in WI is: t1 = 0 and t3 = t2 = �� ; with y1
s.t. the revenue constraint is satis�ed.7

A more detailed speci�cation of the above proposition is proved in Appendix A
as Proposition 5.

6See also the review in Lambert (2001).
7Many equivalent taxation schemes could solve the optimization problem. The presented scheme,

indeed, is not a¤ected by the choice of y2 > y1; moreover an equivalent scheme could be derived
where t3 = �� ; t1 = t2 = 0 and the relevant income threshold is y2:
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That is, the optimal taxation design requires only two income brackets with the
maximal admissible proportional tax burden in the higher brackets and no taxation
for bottom incomes. When �� = 100% then the solution involves reducing to y1 all
incomes that are above this value.
This result holds not only for the SEFs in WI but could be shown to hold for

any strictly inequality averse SEF not necessarily belonging to the family of those
that are linearly rank-dependent. It is well known, indeed, that all such SEFs for
comparisons of distributions with the same average income are consistent with the
partial order induced by the Lorenz curve or equivalently by the criterion of second
order stochastic dominance [see Atkinson (1970), and Lambert (2001)]. Then, the
result in Proposition 1 could be generalized to all SEFs that are consistent with
the Principle of Transfers, that is are such that any income transfer from a richer
individual to a poorer one does not decrease the social evaluation of the distribution.
In mathematical terms these functions are Schur-concave [see Dasgupta et al. (1973)
and Marshall et al. (2011)]. Here, we provide the generalization of the result in
Proposition 1. Its proof is illustrated in the Appendix of the paper and it is obtained
following a di¤erent strategy than the one adopted for the proof of Proposition 1.
More speci�cally, we consider a larger set of tax functions that include T�� : Let T��
denote the set of all non-negative and non-decreasing taxation schemes with maximal
marginal tax rate �� 2 (0; 1]; such that T (y) � 0 and �� � T (y)�T (y0)

y�y0 � 0 for all y; y0
such that y > y0, then we derive the following statement

Proposition 2 The solution of the optimal taxation problem with �xed labour supply
involving tax schedules in T�� maximizing all the Schur-Concave evaluation functions
of the post-tax income distribution obtained under a given revenue constraint involves
a two brackets linear taxation scheme where t1 = 0; and t2 = �� ; with y1 s.t. the
revenue constraint is satis�ed.

The results in Proposition 2 could also be interpreted in term of progressivity
comparisons of the alternative tax schemes considered. It clari�es that the tax scheme
in the proposition is the more progressive among all tax schemes that guarantee the
same revenue [see, Keen et al. (2000) and references therein, and Lambert (2001)
Ch. 8]. Thus, the Lorenz curve of tax burden under the taxation scheme considered
is more unequal (and then more disproportional) in terms of Lorenz dominance than
the one of any alternative tax scheme in T�� giving the same revenue, as originally
suggested in Suits (1977) as a criterion to assess the progressivity of a tax schedule.

4.2 Polarization concerns

Let WP the set of all polarization sensitive linear rank-dependent SEFs, where v(p)
is increasing below the median and above the median and weights are larger in the
�rst interval than in the second with v(0) = v(1) = 1 and limp!1=2� v(p) = 2 6=
limp!1=2+ v(p) = 0, (see right panel of Figure 1).
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To specify the solution we need to consider two hypothetical two brackets tax
schemes with marginal tax rates t1 and t2 and whose threshold between the two
brackets is set at the median income level y (1=2) = yM . Under the �rst tax scheme the
�rst bracket is not taxed (t1 = 0) ; while the second bracket is taxed at the maximal
tax rate t2 = �� : We denote with R+ the revenue arising from such taxation. Under
the second tax scheme the �rst bracket is taxed at the maximal tax rate t1 = �� ;
while the second bracket exhibits zero marginal tax rate (t2 = 0) and so all income
recipients above the median are taxed with a lump-sum tax equal to ��yM :We denote
with R� the revenue arising from this latter taxation scheme. We can now formalize
the results in next the proposition.

Proposition 3 The solution of the optimal taxation problem with �xed labour supply
for tax schedules in T�� maximizing linear SEFs in WP is:

(i) If R � minfR+; R�g, p1 < 1=2 < p2 where
1�VP (p1)
1�p1 = 1�VP (p2)

1�p2 and such that
the revenue constraint is satis�ed with t1 = t3 = 0 and t2 = �� .

(iia) If R > R+; solution (i) should be compared with p1 < 1=2; t1 = 0 and t2 = t3 =
�� ; where p1 [and so also y1] is such that the revenue constraint is satis�ed.

(iib) If R > R�; solution (i) should be compared with p1 > 1=2; t1 = �� and t2 = t3 =
0; where p1 [and so also y1] is such that the revenue constraint is satis�ed.

(iii) If R > maxfR+; R�g; all three solutions (i), (iia) and (iib) should be compared.

A more detailed speci�cation of the above proposition is proved in Appendix A
as Proposition 7.
The result in Proposition 3 highlights the fact that under standard revenue re-

quirements, i.e. R � minfR+; R�g; the marginal tax rate is maximal within the
central bracket that includes the median income, while for very large revenue re-
quirements maximal marginal tax rates are applied in the tail brackets. However,
note that solution (iib) involves also a lump-sum taxation for those individuals in the
higher bracket. While solution (iia) coincides with the optimal solution for inequality
sensitive SEFs. In all cases the median income is subject to the maximal marginal tax
rate. Moreover, it should be pointed out that solution (i) is associated with a local
maximum of the optimization problem under any condition on the level of revenue.
While solution (i) always exists, solutions (iia) and (iib) may lead to local maxima
and the conditions R > R+ and R > R� are only necessary for this result and in any
case they need to be compared with solution (i).
The comparison between the results in Proposition 1 and Proposition 3 highlights

the striking role of the distributive objective in determining the qualitative shape of
the optimal taxation scheme. While for inequality sensitive SEFs the optimal scheme
considers increasing marginal tax rates, for polarization sensitive SEFs it requires to
tax heavily the "middle class". These two results act as benchmarks for the analysis
of optimal taxation with elastic labour supply presented in the next section.
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5 The solution with elastic labour supply

In Section 4 we provide an analytical solution to the optimal taxation problem, under
the assumption of exogenous labour supply. We now rely on numerical analysis to
study the optimal taxation problem under the assumption of endogenous labour sup-
ply. First, we specify how agents take their labour/leisure choices. Second, we state
the optimal taxation problem of a government who take agents�behavioral responses
into account when designing the optimal tax system. Then, we set the parameters
of the model and lastly we run numerical simulations to derive the properties of the
optimal tax schedule.
As to labour/leisure choices, we consider the following static model of labour

supply. There is a continuum of agents and each of them maximizes a quasi-linear
utility function8:

U(x; l) = x� 1

�
� l�; (8)

subject to the budget constraint:

x = y � T (y) (9)

in which x denotes the net disposable income/consumption, l 2
�
0; �L

�
(where �L is

the time endowment) is the labour supply, y = wl (where w is the wage rate) is the
gross labor income, T (y) is the tax function given by equation (7), the parameter �
determines the wage elasticity of labour supply, which is constant and equal to:9

" =
1

(�� 1) : (10)

The solution of the agent�s optimization problem gives the chosen value y? of gross
income as a function of the wage rate, the policy variables (t1; t2; t3; y1; y2) and the
parameter �:

y? = g(w; t1; t2; t3; y1; y2; �): (11)

Each agent receives a di¤erent wage rate and the distribution of wage rates is de-
noted by �w. This distribution, the policy variables and the parameter �, deter-
mine, through equation (11), the distribution of gross income which is denoted by
�g(w;t1;t2;t3;y1;y2;�).

8The quasi-linearity of the utility function is often done in the optmal taxation literature: it rules
out the income e¤ect on labour supply and allows to focus on the substitution e¤ect only.

9More precisely, the wage elasticity of labour supply is the one speci�ed in equation (10) only
when there is no income tax. When we introduce the tax function (7), the wage elasticity of labour
supply is given by equation (10) only if gross income falls in the interior of the income brackets of
the tax schedule. When gross income is equal to the thresholds of the income brackets, the wage
elasticity of labour supply depends on the fact that an increase or a decrease of the wage rate is
considered, and it is no longer always equal to the expression in (10). Details are available upon
request.
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Once agents�behavior has been speci�ed, the government optimal taxation prob-
lem can be stated. Given the distribution of wages �w and a speci�c value for the
parameter �, the government chooses the policy variables (t1; t2; t3; y1; y2) in order
to maximize the SEF (5) subject to the government budget constraint (6), taking
into account that the distribution of gross incomes is given by �g(w;t1;t2;t3;y1;y2;�;). To
compute the optimal tax schedule we resort to numerical simulations. For the sake of
computational time, we constraint the government to choose t1 � t2 while the choice
of t3 is unrestricted: when t3 � t2 the tax schedule is convex; when t3 < t2 the tax
schedule is non-convex.10

To compute the solution, we need to specify the distribution �w of individual
wages, the value of the parameter � of the utility function, the exogenous govern-
ment�s revenue requirement R and the maximal admissible tax rate �� .
As to the distribution �w of individual wages, we follow Apps et al. (2014) and

we consider a truncated Pareto distribution ranging from 20 to 327, with mean (�)
and median (m) equal to 48:05 and 32:36 respectively.11

As to �, we consider di¤erent values which, in their turn, imply di¤erent values of
the wage elasticity of labour supply. Our purpose is to use � to perform a robustness
analysis in which we explore the impact, for the optimal tax schedule, of changing the
sensitiveness to taxation of a given reference distribution. As a reference distribution,
we choose the gross income distribution when there is no income tax and labour
supply is completely inelastic, i.e. � ! 1 (i.e. " = 0). We denote this reference
distribution by �g(w;0;0;0;0;0;1):

12 Then, we consider lower (higher) values of � ("),
namely � equal to 3; 6 and 11 (and " equal to 0:10, 0:20 and 0:50).13 However, we
need to take into account that changing � not only a¤ects how the distribution of
gross income reacts to taxation (see equation (10)), it also a¤ect the distribution itself
(see equation (11)). In order to neutralize this latter implication of changing �, and

10We use a grid search method. More speci�cally, we de�ne the grids for t1; t2; y1 and y2, with
t1 � t2 and y1 � y2: For each quadruple (t1; t2; y1; y2) we compute �rst the value of t3 which keeps
the government budget constraint balanced and then the associated value of the SEF. Last, we
identify the combination of policy parameters delivering the highest value of the SEF. The results
that we report in the two tables at the end of this section are obtained by iterating such procedure
three times, by considering at each stage a di¤erent speci�cation of the grids of the thresholds. In
particular, in the �rst round grids range from 0 to 260 with step-size equal to 1. In the second round,
we de�ne grids on a neighborhood (+/-10) of the optimal thresholds obtained in the previous round
with step-size equal to 0.5. Lastly, in the third round grids range in a neighborhood (+/-5) of the
second round optimal solution with step-size equal to 0.1. Only for the case of �xed labour supply
(i.e. " = 0) we run a further simulation where grids are de�ned on a neighborhood (+/-1) of the
third round optimal solution, with step-size equal to 0.01. The grids for tax rates always range from
0 to 0.75 with step-size equal to 0.01.
11More speci�cally, this distribution corresponds to the distribution (1.a) considered by Apps et

al. (2014).
12Note that, when �!1, the gross income distribution when there is no income tax is equal to

the wage distribution, i.e. �g(w;0;0;0;0;0;1) = �w
13These values of the labor supply elasticity are broadly consistent with the empirical estimates

provided by the literature (see Meghir and Philips (2008), Saez et al. (2009)).
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keep the distribution of gross income in the absence of taxation equal to the reference
distribution �g(w;0;0;0;0;0;1;) even when � < 1, we rescale the wage distribution: in
particular wages need to be raised to the power of �

��1 .
14

As to the exogenous revenue requirement for the government R , we consider
di¤erent values, expressed as fraction of the average gross income � in absence of
taxation: 0:10; 0:15 and 0:20. Lastly, the maximal admissible marginal tax rate ��
that the government can set is equal to 0:75.
Table 1 and Table 2 present the results when the government has inequality con-

cerns or polarization concerns respectively. In each Table, for di¤erent values of " and
of �R, we compute the optimal convex and non-convex tax schedule: the comparison
of social welfare in these two tax regimes give us the optimal tax system.
More speci�cally, from Table 1 we may observe that with �xed labour supply

(" = 0) the socially optimal tax schedule is as described in Proposition 1: two income
brackets with maximal admissible proportional taxation in the higher bracket and
zero for bottom incomes. The income threshold between the two brackets is such that
the revenue constraint is satis�ed. That is, the higher is the revenue requirement,
the lower is the income threshold and the no-taxation area. By introducing labour
supply elasticity, the socially optimal tax schedule entails three brackets and becomes
non-convex, with a reduced marginal tax rate for the highest income bracket, which
includes the extremely right tail of the income distribution. The reason for choosing
to reduce the tax rate on top incomes, whose social weight is very low15, is related
to a La¤er-curve type e¤ect and is reminiscent of the classical result obtained for
welfarist optimal non-linear income taxation, i.e. zero marginal tax rate for the top
income. That is, by setting t3 < t2, it is possible to collect more revenues from top
incomes and thus to widen the �rst income bracket, reducing the �scal burden for
people in the lower tail of the income distribution. In summary, the welfare gains
due to the fact that more people belong to the �rst income bracket (and to the fact
that top incomes face a lower marginal tax rate), o¤set the welfare loss determined
by the higher marginal tax rate on the incomes belonging to the central bracket.
Numerical results for polarization based SEF are presented in Table 2. With �xed

labour supply the socially desirable tax schedule is the one described by Proposition 3,
i.e. a central bracket with the maximal admissible marginal tax rate and zero marginal
tax rates in the tail brackets. The median income falls within the central bracket,
while the two income thresholds are such that the revenue constraint is satis�ed.
The higher is the revenue requirement, the larger is the central bracket. With elastic
labour supply the optimal tax scheme is always non-convex. However, di¤erently
than the case of inequality sensitive SEF, to reduce polarization a positive marginal
tax rate is applied in the �rst income bracket, while for top incomes the marginal
tax rate is zero. Moreover, the highest bracket is larger than in the case of inequality
based SEF. When the revenue requirement increases, di¤erently from the case of �xed

14Details are available upon request.
15See the Gini weighting function in the left panel of Figure 1.

14



labour supply, the central bracket is almost unchanged and the revenue constraint is
satis�ed with higher marginal tax rate in the �rst bracket. However, when elasticity is
large enough (i.e. " = 0:20) an increase of the revenue requirement from 15% to 20%
of the mean, requires a "lump-sum" tax taxation. In other words, when elasticity
is large the optimal tax system is such that the two thresholds are lower than the
lowest income level (recall that we are considering a truncated Pareto distribution
with lowest income equal to 20) and taxation is the maximal admissible within the
central bracket. Simulations for the convex regime show that when elasticity is high
the optimal convex con�guration reduces to a proportional tax system, however this
possibility is never socially preferred compared to the non-convex regime.
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6 Concluding remarks

In this paper we adopt a non-welfarist approach to analyze how the optimal la-
bor income tax schedule changes according to the government�s redistributive objec-
tive, expressed using a linear rank-dependent social evaluation function (SEF) which
can alternatively incorporate concerns for the reduction of inequality or polarization.
More precisely, we consider a three brackets linear piecewise tax schedule.
Our results reveal that redistributive objectives matter. The optimal tax schedule,

indeed, substantially changes depending on whether the government is inequality or
polarization sensitive.
With �xed labour supply, the optimal tax schedule maximizing an inequality sensi-

tive SEF requires only two income brackets with the maximal admissible proportional
tax burden in the higher bracket and no taxation for bottom incomes. The socially
desiderable tax schedule reducing polarization is such that taxation is the maximal
admissible within the central bracket, which includes the median income. While the
marginal tax rates applied in the two tail brackets are set equal to zero.
With positive labour supply elasticity, the optimal tax schedule is non-convex

both for inequality and polarization reduction, with reduced marginal tax rate for the
highest bracket. However, while for polarization sensitive SEF this bracket includes
about the top quartile of the distribution, for inequality sensitive SEF the reduced
marginal tax rate is applied only on the extreme tail of the distribution (about the
98th percentile).

Appendix

Solutions for the constrained optimization problems for in-
equality and polarization sensitive SEFs

Recall the constrained optimization problem faced by the non-welfarist government

max
t1;t2;t3;y1;y2

L = Wv + �

�
R�

Z 1

0

T (y (p)) dp

�
; (12)

with ti 2 [0; 1] and y1 < y2: The associated partial derivatives with respect the three
tax rates are ti for i = 1; 2; 3 are respectively

@L
@t1

= �
Z p1

0

v (p) y (p) dp�
Z 1

p1

v (p) y1dp� �
�Z p1

0

y (p) dp+

Z 1

p1

y1dp

�
; (13)

@L
@t2
= �

Z 1

p1

v (p)min fy (p) , y2g dp+
Z 1

p1

v (p) y1dp� �
�Z 1

p1

min fy (p) , y2g dp�
Z 1

p1

y1dp

�
;

(14)
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and
@L
@t3

= �
Z 1

p2

v (p) [y (p)� y2] dp� �
Z 1

p2

[y (p)� y2] dp: (15)

The two �rst order conditions (FOCs) with respect the income thresholds y1 and y2
are:

@L
@y1

= �
Z 1

p1

v (p) [t1 � t2] dp� �
Z 1

p1

(t1 � t2) dp = 0 (16)

and
@L
@y2

= �
Z 1

p2

v (p) [t2 � t3] dp� �
�Z 1

p2

(t2 � t3) dp
�
= 0: (17)

The FOC with respect to the Lagrangian multiplier is

@L
@�

= R�
Z 1

0

T (y (p)) dp = 0: (18)

Derivation and simpli�cation of FOCs

The associated Kuhn-Tucker FOCs for the marginal tax rates are either @L
@ti

���
ti=0

� 0;

or @L
@ti

���
ti2(0;1)

= 0; or @L
@ti

���
ti=1

� 0 for i = 1; 2; 3:While the FOCs for the income bracket

thresholds are @L
@y1

= 0 and @L
@y2

= 0;with y2 > y1 > 0; and for the multiplier � the
FOC requires that @L

@�
= 0: The derivatives with respect to the three marginal tax

rates can be rewritten as:

@L
@ti

= �
Z 1

0

v (p)hi (p) dp� �
�Z 1

0

hi (p) dp

�
(19)

for i = 1; 2; 3; where

h1 (p) : =

�
y (p) if p < p1
y1 if p � p1

;

h2 (p) : =

8<:
0 if p < p1
y (p)� y1 if p 2 [p1; p2)
y2 � y1 if p � p2

;

h3 (p) : =

�
0 if p < p2
y (p)� y2 if p � p2

:
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The associated cdfs of these three inverse functions are denoted with Hi. The partial
derivatives with respect to the thresholds of the income brackets are

@L
@y1

= [t2 � t1] [1� V (p1) + (1� p1)�] (20)

@L
@y2

= [t3 � t2] [1� V (p2) + (1� p2)�] (21)

and the derivative with respect to the Lagrangian multiplier is

@L
@�

= R�
3X
i=1

ti

Z 1

0

hi (p) dp: (22)

Recall that each SEF can be decomposed into an abbreviated social evaluation where
the average of a distribution is multiplied by 1 minus a linear measure of dispersion
Iv (:), that is Wv(F ) = � (F ) [1� Iv(F )] : In our case Iv(F ) could be for instance the
Gini index or a polarization index as those illustrated in Section 2. Moreover, let
�i(p) denote the quantile function at position p of distribution �i where incomes are
equal to 0 for all individuals whose position is lower than pi and are constant with
value z > 0 for all individuals in positions p � pi; with � (�i) = z � (1� p1): The next
remark summarizes the partial derivatives of the social optimization problem

Remark 4 The partial derivatives of the Lagrangian optimization problem in (12)
are:

@L
@ti

= �� (Hi) � [1� Iv(Hi) + �] for i 2 f1; 2; 3g;

@L
@y1

= [t2 � t1] � � (�1) � [1� Iv(�1) + �] ;

@L
@y2

= [t3 � t2] � � (�2) � [1� Iv(�2) + �] ;

@L
@�

= R�
3X
i=1

ti � � (Hi) :

Note that if we let @L
@yi
= 0; then either ti+1 = ti holds or � = � [1� Iv(�i)] :

Inequality concerns

We derive here the qualitative features of the socially optimal tax schedule that hold
for any distribution of pre-tax gross incomes, for the classWI of linear rank-dependent
SEFs with decreasing non-negative weights v(p); and for the set T�� of three brackets
piecewise linear tax functions whose marginal tax rates could not exceed �� 2 (0; 1].
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Derivation of optimal tax scheme for SEFs in WI : Consider the results in
Remark 4. If we consider SEFs where v(p) is decreasing as is the case for the Gini
based SEF and in general for all SEFs that are sensitive to inequality reductions
through rank preserving progressive transfers from richer to poorer individuals, then
Iv(�1) < Iv(�2) [with Iv(�1) = Iv(�2) only if p1 = p2]: This is the case because
once the distributions �1 and �2 are normalized by their respective means; then it is
possible to move from the latter to the former through a series of progressive transfers
from the richer individuals with those poorest with normalized income 0.
It then follows that either (i) [t3 = t2 = t1 = t] or (ii) � = � [1� Iv(�1)] and

[t3 = t2 = � ] :
The case (i) is not consistent with the solution because according to the revenue

constraint we should obtain t =
P3

i=1 � (Hi) =R 2 (0; 1): In this case it should be

@L
@ti

= �� (Hi) � [1� Iv(Hi) + �] = 0

for all i = 1; 2; 3: Given that Iv(Hi) could be di¤erent for all i, then � = 1 � Iv(Hi)
could not hold for all i:
The solution associated to case (ii) then should hold. It then follows that, given

that � = Iv(�1)� 1; we obtain

@L
@ti

= �� (Hi) � [1� Iv(Hi) + �] = �� (Hi) � [Iv(�1)� Iv(Hi)] :

It can be proved that Iv(H3) > Iv(H2) > Iv(�1) > Iv(H1) for any SEF where v(p)
is decreasing and there is positive density both below y1, in between y1 and y2; and
above y2 [that is if 0 < p1 < p2 < 1]. In order to make these comparisons one has to
normalize all incomes by the total income of the respective distribution and therefore
make the comparisons by looking at the distribution of the shares of total income.
Once the income shares are compared the distribution with the smaller dispersion
evaluated by any rank-dependent SEF with decreasing positional weights is the one
where the cumulated income shares are larger for any p: In fact in H1 income shares
are larger than those in �1 at the bottom of the distribution for all p � p1 and are
constant and smaller than those in �1 for p > p1: As a result the cumulated income
shares are larger in H1 than in �1 for any p 2 (0; 1): Following an analogous logic it
could be proved also that Iv(H3) > Iv(H2) > Iv(�1):
From the condition Iv(H3) > Iv(H2) > Iv(�1) > Iv(H1) then follows that: @L

@t1
< 0;

@L
@t2
> 0; and @L

@t3
> 0: As a result we obtain then that t1 = 0; t3 = t2 = � = 1; where

y1 and y2 are set such that R =
P3

i=2 � (Hi) :
Given the above result, the only threshold that matters for the solution is y1:

Moreover, given the sign of the partial derivatives @L
@t1
< 0; @L

@t2
> 0; and @L

@t3
> 0 then

for any given value of y1 we have that the choice of t1 = 0; t3 = t2 = 1 identi�es
a maximum point of the objective function. However, for t1 = 0; t3 = t2 = 1 the

21



value of the threshold y1 is identi�ed by the revenue constraint, in this case we have
that y1 should be such that R = � (H2) + � (H3) : As a result the solution is a global
maximum for the constrained optimization problem.
The above result could be generalized in order to take into account tax functions

whose upper marginal tax rate is not necessarily 100%. To summarize, if we assume
that the maximal marginal tax rate is �� 2 (0; 1] s.t. R � �� � � (F ) we can derive the
statement highlighted in the next proposition.

Proposition 5 (1A) A solution of the optimal taxation problem with �xed labour
supply for tax schedules in T�� maximizing linear SEFs in WI is: t1 = 0 and t3 = t2 =
�� ; with y1 s.t. R = �� [� (H2) + � (H3)] :

Proof proposition 2

Proof. Dominance of the tax scheme presented in the proposition over all alter-
native schemes in T�� that satisfy the revenue constraint for all social evaluation
functions that are Schur-Concave requires to check that the obtained post-tax net
income distribution dominates in terms of Lorenz any of the alterative post-tax
distributions [see Marshall et al. 2011]. That is, let T 0 denote the optimal tax
function then the Lorenz curve of the post tax income distribution is obtained as
LT 0(p) =

1
�T0

R p
0
[y (q)� T 0 (y (q))] dq where �T 0 =

R 1
0
[y (q)� T 0 (y (q))] dq denotes

the average post-tax net income under taxation T 0.
It then follows that Lorenz dominance of this tax scheme over all alternative

schemes T in T�� requires that LT 0(p) = 1
�T0

R p
0
[y (q)� T 0 (y (q))] dq � LT (p) =

1
�T

R p
0
[y (q)� T (y (q))] dq for all T 2 T�� and all p 2 [0; 1]: Recalling that all the

alternative tax schemes should guarantee the same revenue, the condition could be
simpli�ed as

R p
0
[y (q)� T 0 (y (q))] dq �

R p
0
[y (q)� T (y (q))] dq; that is after simplify-

ing for y (q) we obtain Z p

0

T 0 (y (q)) dq �
Z p

0

T (y (q)) dq (23)

for all T 2 T�� and all p 2 [0; 1]; where by construction the revenue constraint requires
that

R 1
0
T 0 (y (q)) dq =

R 1
0
T (y (q)) dq = R:

Recall that by construction (i) T 0 (y (p)) = 0 for all p � p1; and that (ii) �� =
T 0(y)�T 0(y0))

y�y0 � T (y)�T (y0))
y�y0 for all y > y0 and all T 2 T�� : By combining the conditions

(i) and (ii) and the revenue constraint condition it follows that T 0 (y (p)) � T (y (p))
for all p � p1 (with strict inequality for some p); T 0 (y (1)) > T (y (1)) and the tax
schedule T 0 (y) crosses once each schedule T (y) from below:
As a result the condition in (23) holds for all T 2 T�� and all p 2 [0; 1]:
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Polarization concerns.

In order to derive the optimal three brackets linear tax scheme for polarization sen-
sitive evaluation measures we will take as starting point the results in Remark 4.
We consider polarization sensitive linear rank-dependent SEFs where v(p) is in-

creasing below the median and above the median and weights are larger in the
�rst interval than in the second with v(0) = v(1) = 1 and limp!1=2� v(p) = 2 6=
limp!1=2+ v(p) = 0 as for the polarization P index illustrated in the previous section.
We denote with WP the set of all these SEFs.
For these SEFs it is possible to derive p1 and p2 such that Iv(�1) = Iv(�2): This

is the case for instance for the SEF whose weights are represented in (4) : For these
measures it is possible to derive the associated V (p) and compute 1�V (p)

1�p : They are
respectively:

VP (p) =

�
p2 + p if p � 1=2
p2 + 1� p if p > 1=2

;

with
1� VP (p)
1� p =

(
1� p2

1�p if p � 1=2
p if p > 1=2

:

Which can be represented as in the following �gure

1�VP (p)
1�p

Note that for this speci�c SEF we have that @L
@y1
= @L

@y2
= 0 if�� = 1�VP (p1)

1�p1 = 1�VP (p2)
1�p2 :

The above function 1�VP (p)
1�p is continuous and is decreasing for p � 1=2; and increasing

for p > 1=2; with the minimum in p = 1=2 where it takes the value of 1/2, and the
maxima in p = 0 and p = 1 where it takes the value of 1. It then follows that there
exist p1 < 1=2 and p2 > 1=2 such that �� = 1�VP (p1)

1�p1 = 1�VP (p2)
1�p2 for �� > 1=2:
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In this case

�� = 1� Iv(�1) = 1�
p21

1� p1
= 1� Iv(�2) = p2

thus p21
1�p1 = Iv(�1) = Iv(�2) = 1� p2:

More generally for all SEFs inWP the associated function 1� V (p) is continuous
and strictly decreasing [from 1 to 0] for all p; and is concave for p � 1=2 and for
p 2 (1=2; 1]; with slope -1 for p = 0 and p = 1: By computing the derivative of
1�V (p)
1�p ; its sign depends on the sign of �v(p)(1�p)+1�V (p); by construction of the
weighting function it turns out that in line with what shown for the bi-polarization
weighting VP (p); we have that for all SEFs in WP the value of

1�V (p)
1�p is decreasing

for p � 1=2; and increasing for p > 1=2; with the minimum in p = 1=2.
Following the same logic presented for the inequality sensitive SEFs the optimal

solution for SEFs in WP excludes the case where [t3 = t2 = t1 = t] :
We can then consider three cases: (i) t3 6= t2; t1 6= t2; (ii) t3 = t2; t1 6= t2; and

(iii) t3 6= t2; t1 = t2: Where cases (ii) and (iii) can be analyzed symmetrically.

Consider �rst case (i) where

@L
@y1

=
@L
@y2

= 0! � = �1 + Iv(�1) = �1 + Iv(�2): (24)

By substituting � into the formula for @L
@ti
one obtains

@L
@ti

= �� (Hi) � [Iv(�1)� Iv(Hi)]

= �� (Hi) � [Iv(�2)� Iv(Hi)]

for all i = 1; 2; 3; with p1 < 1=2 < p2:
Note that for any polarization measure Iv(�2) > Iv(H3); that is @L

@t3
< 0; implying

that t3 = 0: This result is obtained because the di¤erence between �2 and H3 is that
the latter distribution is more disperse for realizations that take place in positions
above p2 > 1=2; while in �2 all incomes covering these positions are equal. As we
have argued, moving fromH3 to �2 increases polarization because this transformation
increases the identi�cation e¤ect reducing the inequality between the individuals on
the same side of the median.
It is possible also to show that for dispersion measures that are sensitive to po-

larization we have that Iv(�1) > Iv(H1) that is @L
@t1
< 0; implying that t1 = 0:

This result could be obtained by properly de�ning distributions �1 and H1 so
that � (�1) = � (H1) : By construction it follows that these distributions cross once
for p = p1 and for all p > p1 with p1 < 1=2; incomes are larger in �1 with a constant
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di¤erence compared to those in H1; while for p < p1 incomes are larger in H1: It then
follows that H1 can be obtained from �1 by transferring all the income di¤erences for
p > p1 in order to compensate the di¤erences of opposite sign for p < p1: Note that
the average weight in the SEF for income in position p > p1 is lower than the minimal
weight [that corresponds to 1] for all the incomes in position p < p1: As a result the
SEF value increases when moving from �1 to H1 and given that � (�1) = � (H1) then
Iv(�1) > Iv(H1).
In order to verify the condition related to the sign of @L

@t2
; it is possible to combine

distributions �1 and �2 whose linear measures of polarization are the same in order
to obtain a new distribution �12 with the same value for the measure of polarization
but such that its quantile function intersects from above the one of H2 for p = 1=2:
In this case it can be shown that for polarization sensitive dispersion measures we

have that Iv(�1) = Iv(�2) < Iv(H2); thus we obtain @L
@t2
> 0 and therefore t2 = 1:

This is the case because by construction �12 can be obtained from H2 by trans-
ferring incomes from above the median to below the median and transferring incomes
from positions that are above the median and close to it to individuals in the upper
tail. Both operations reduce the polarization and thus Iv(H2) > Iv(�12):
We then obtain t2 = 1 and t1 = t3 = 0; with p1 < 1=2 < p2 where Iv(�1) = Iv(�2)

and such that R = � (H2) :
In order to verify that such conditions are associated to a constrained maximum,

note �rst that given the sign of the partial derivatives @L
@t3
< 0; @L

@t1
< 0; and @L

@t2
> 0;

then for given values of p1 and p2 (and so also for given values of y1 and y2) satisfying
the revenue constraint R = � (H2) we have that the combination t2 = 1 and t1 = t3 =
0 is associated to a maximum. Consider now the population shares p�1 < 1=2 < p�2
associated to the solution that satisfy the condition (24) and the revenue constraint
that is such that � = �1 + Iv(�1) = �1 + Iv(�2) and R = � (H2) : Our aim is
to show that under the condition t2 = 1 and t1 = t3 = 0 these population shares
(and the associated values of y1 and y2) correspond to a maximum of the constrained
optimization problem.
Associated to these shares we have the value �� and the dispersion indices Iv(��1) =

Iv(�
�
2) such that 1� Iv(��1) + �� = 0 and 1� Iv(��2) + �� = 0.
Consider a generic pair of shares p1 < 1=2 < p2 (with associated values of y1

and y2) in the neighborhood of p�1 and p
�
2 that satis�es the revenue constraint. By

construction, given that the revenue constraint has to satis�ed it should be either
that (I) p1 < p�1 < 1=2 < p2 < p�2 or that (II) p

�
1 < p1 < 1=2 < p�2 < p2: That

is, a reduction (increase) in y1 should be paired with a reduction (increase) in y2
in order to continue to satisfy the revenue constraint. Substituting the condition
t2 = 1 and t1 = t3 = 0 in the SEF and making use of the calculations leading to
(16) and (17) we have that @Wv

@y1
=
R 1
p1
v (p) dp = 1�V (p1) and @Wv

@y2
= �

R 1
p2
v (p) dp =

1� V (p2): Moreover, denoting with R the revenue
R 1
0
T (y (p)) dp we obtain also that

@R
@y1
= �

R 1
p1
dp = �(1� p1) and @R

@y2
=
R 1
p2
dp = (1� p2): It follows that by taking the

di¤erential of the revenue we have dR = �(1 � p1)dy1 + (1 � p2)dy2; so under the
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assumption that the revenue constraint is satis�ed R = R; we have that dR = 0 and
so

(1� p1)dy1 = (1� p2)dy2: (25)

Analogously the di¤erential of the SEF is

dWv = [1� V (p1)] dy1 � [1� V (p2)] dy2: (26)

Substituting for dy2 from (25) we obtain

dWv = (1� p1) �
�
1� V (p1)
1� p1

� 1� V (p2)
1� p2

�
dy1: (27)

Recall that the value of 1�V (p)
1�p is decreasing for p � 1=2; and increasing for p > 1=2;

with the minimum in p = 1=2. As a result under case (I) we have that dy1 < 0 and
that p1 and p2 decrease w.r.t. p�1 and p

�
2: As a result

1�V (p1)
1�p1 > 1�V (p2)

1�p2 and so dWv < 0:
Similarly we have that if dy1 > 0 then p1 and p2 increase w.r.t. p�1 and p

�
2; and so

1�V (p1)
1�p1 < 1�V (p2)

1�p2 leading to dWv < 0 according to (27): As a result the combination of
p�1 and p

�
2 where

@L
@y1
= @L

@y2
= 0 identi�es a maximum for the constrained optimization.

Consider now case (ii) where t3 = t2; t1 6= t2 implying that in order to obtain
@L
@y1
= 0 necessarily it is required that � = �1 + Iv(�1):
Note that t3 = t2 guarantees that @L

@y2
= 0 irrespective of the value of p2; that in

any case has to satisfy p2 > p1:
Substituting for � into @L

@ti
we obtain

@L
@ti

= �� (Hi) � [Iv(�1)� Iv(Hi)] :

Recall that t3 = t2 implies that the sign of Iv(�1) � Iv(H2) according to the polar-
ization sensitive dispersion measures Iv(�) should be the same as the sign of Iv(�1)�
Iv(H3); and this result should hold for any p2 > p1:
We leave aside for the moment the case where Iv(�1)�Iv(H2) = Iv(�1)�Iv(H3) =

0.
We can then have two cases, either t3 = t2 = 1 and t1 = 0; or t3 = t2 = 0 and

t1 = 1:
Note that in the �rst case the revenue constraints require thatR = � (H1)+� (H2) ;

while in the second case it is required that R = � (H1) :
AsG increases�� should increase, therefore in consideration that�� = 1�Iv(�1)

we have that:
(iia) either p1 < 1=2; t3 = t2 = 1 and t1 = 0;
(iib) or p1 > 1=2; t3 = t2 = 0 and t1 = 1:
In fact for (iia) we have that as R increases then p1 should be reduced to increase
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the tax base in order to collect the required tax revenue, at the same time as �1
changes we have that also �� increases. Given the de�nition of �1 this will not be
the case if p1 > 1=2:
For (iib) we have the symmetric argument where the value of p1 > 1=2 should

increase in order to guarantee to collect the required revenue and this will lead to an
increase of �� because p1 > 1=2:
As for the previous case (i), given the shape of �1, we can either have p1 < 1=2;

or p1 > 1=2; and therefore both (iia) and (iib) are admissible cases.
Suppose we take p1 < 1=2:
Substituting for � = �1+Iv(�1) into @L

@ti
we obtain @L

@ti
= �� (Hi)�[Iv(�1)� Iv(Hi)] :

As for the analysis in case (i) we can show that Iv(�1) > Iv(H1) giving t1 = 0: Note
that we obtain t3 = t2 = 1 if the signs of Iv(�1)� Iv(H2) and of Iv(�1)� Iv(H3) are
negative, it should also be that Iv(�1) < Iv(H2) when p2 is set equal to 1. However,
it is not possible here to derive a clear-cut conclusion on the sign of Iv(�1)� Iv(H2);
and in general for a given weighting function and a given distribution the possibility
of obtaining Iv(�1) > Iv(H2) when p2 = 1 cannot be ruled out.
Consider now case (iib) where p1 > 1=2: Again, referring to the analysis developed

for case (i) we can show that Iv(�1) > Iv(H2) and Iv(�1) > Iv(H3) giving t3 = t2 = 0:
Similarly to what argued for the previous case (iia) it is not possible now to derive
a clear-cut conclusion on the sign of Iv(�1) � Iv(H1); and in general for a given
weighting function and a given distribution the possibility of having Iv(�1) > Iv(H1)
and therefore that it should not hold t1 = 1 cannot be ruled out.
Going back now to the case where Iv(�1)� Iv(H2) = Iv(�1)� Iv(H3) = 0. If this

is the case, then t3 = t2 may not reach the maximal value. However, as the revenue
requirement increases then �� should also increase, then p1 changes and accordingly
also �1 changes, it follows that Iv(�1) is modi�ed and given that H2 and H3 are
not a¤ected then the signs of Iv(�1) � Iv(H2) and Iv(�1) � Iv(H3) change leading
either to t3 = t2 = 1 or t3 = t2 = 0: Thus, the solutions where tax rates take the
extreme values as in (iia) or (iib) are admissible only for cases related to speci�c
revenue values, and in general are not guaranteed as the solution at point (i). If these
latter solutions are identi�ed they are associated to local maxima of the constrained
optimization problem (see the arguments discussed for the solution related to the
inequality sensitive SEF case) and should be compared to the solution at point(i).

If we consider case (iii) we can note that it is analogous to case (ii) because both
cases will require to consider essentially two brackets with maximal marginal tax rate
within one bracket and minimal marginal tax rate in the other.

A remark for cases (iia) and (iib). Before summarizing the results we make the
following remark that is motivated by the fact that cases (iia) and (iib) hold only if
the revenue requirement is "su¢ ciently high". In fact for case (iia) we have p1 < 1=2;
and the maximal tax rates are t3 = t2 = 1 with t1 = 0; and for case (iib) we have
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p1 > 1=2; with t3 = t2 = 0 and maximal tax rate set at t1 = 1: Analogous results hold
also if we assume that the maximal marginal tax rate is �� 2 (0; 1]: Let y (1=2) = yM
denote the median income. Then, let H� denote the distribution whose quantile
function is

h� (p) =

�
y (p) if p < 1=2
yM if p � 1=2 ;

and let H+ denote the distribution whose quantile function is

h+ (p) =

�
0 if p < 1=2
y (p)� yM if p � 1=2

The associated averages of these two distributions are respectively � (H�) and � (H+)
such that by construction their sum coincides with the overall per-capita gross income,
that is � (H�) + � (H+) = � (F ). The next remark holds

Remark 6 Case (iia) may hold only if R > �� [� (H+)] : Case (iib) may hold only if
R > �� [� (H�)] :

Recall that the condition in the remark are only necessary for (iia) or (iib) to
hold, while if they do not hold this is su¢ cient to guarantee that case (i) holds.
We can now summarize the results in the next proposition.

Proposition 7 (3A) The solution of the optimal taxation problem with �xed labour
supply for tax schedules in T�� maximizing linear SEFs in WP is:

(i) p1 < 1=2 < p2 where I(�1) = I(�2) and such that R = ��� (H2) with t1 = t3 = 0
and t2 = �� ; if R � minf��� (H+) ; ��� (H�)g.

(iia) If R > ��� (H+) solution (i) should be compared with p1 < 1=2; t1 = 0 and
t2 = t3 = �� where R = �� [� (H2) + � (H3)] :

(iib) If R > ��� (H�) solution (i) should be compared with p1 > 1=2; t1 = �� and
t2 = t3 = 0;where R = ��� (H1) :

(iii) If R > maxf��� (H+) ; ��� (H�)g all three solutions should be compared.
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