# The promise of eCooking Experimental Evidence from Eastern Congo

## Randomized Controlled Trial in Goma, DRC

**INRAE-CEEM:** Sébastien Desbureaux, Raphael Soubeyran ENS Lyon: Mathieu Couttenier Antwerp: Lara Collart, Nik Stoop, Marijke Verpoorten Virunga: Natsuno Shinagawa, Jean de la Croix Kembere Mulwahili, Christine Musharhamina







fid

Fonds d'Innovation



### Biomass fuels : Social costs

Around 2.4 billion people depend on biomass fuel for cooking (UN, 2023)



#### Share of the population with access to clean fuels for cooking, 2020

Access to clean fuels or technologies such as natural gas, electricity, and clean cookstoves reduce exposure to indoor air pollutants, a leading cause of death in low-income households.



Our World in Data

### Biomass fuels : Social costs

Around 2.4 billion people depend on biomass fuel for cooking (UN, 2023)

#### Huge social costs:

- 90% of the wood harvested in forests in SSA relates to biofuel cooking<sup>1</sup>
- Around 30% of wood fuel is harvested unsustainably<sup>2</sup>
- Carbon dioxide is emitted when trees are cut, and when wood is carbonized and combusted\*





#### Biomass fuels : Private costs

- Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)
- Huge private costs:
  - Indoor air pollution estimated to kill around 2 to 4 million people each year <sup>1</sup>



- Share of deaths from indoor air pollution reaches 12% in some countries <sup>1</sup>, disproportionnately women
- Lower birthweight & height-for-age, increasing risk of negative health outcomes throughout life<sup>2</sup>



#### Biomass fuels : Private costs

- Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)
- Huge private costs:
  - Indoor air pollution estimated to kill around 2 to 4 million people each year <sup>1</sup>
  - Burden mostly falls on women: most involved in cooking & collecting wood ('time poverty')<sup>2</sup>



#### Biomass fuels : Private costs

- Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)
- Huge private costs:
  - Indoor air pollution estimated to kill around 2 to 4 million people each year <sup>1</sup>
  - Burden mostly falls on women: most involved in cooking & collecting wood ('time poverty')<sup>2</sup>
  - If not 'collected for free', more and more expensive: 3.5% of income for the median American household, versus 20% of income for median Kenyan urban hh<sup>3</sup>



• Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)



• Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)

... YET, almost 2 billion of them are connected to the grid! <sup>1</sup>



- Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)
  - ... YET, almost 2 billion of them are connected to the grid! <sup>1</sup>
- Comparison: in pre-war London, 65% of households had access to electricity, but only 11% used it for cooking <sup>2</sup>



- Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)
  - ... YET, almost 2 billion of them are connected to the grid! <sup>1</sup>
- Comparison: in pre-war London, 65% of households had access to electricity, but only 11% used it for cooking <sup>2</sup>
- But, now electric cooking much more cost-efficient, e.g. EPC = hotplate + insulation + pressure → twice as efficient as a hotplate + cheaper<sup>3</sup>



- Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)
  - ... YET, almost 2 billion of them are connected to the grid! <sup>1</sup>
- Comparison: in pre-war London, 65% of households had access to electricity, but only 11% used it for cooking <sup>2</sup>
- But, now electric cooking much more cost-efficient, e.g. EPC = hotplate + insulation + pressure → twice as efficient as a hotplate + cheaper<sup>3</sup>



### **Electric Pressure Cookers**



- Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)
  - ... YET, almost 2 billion of them are connected to the grid! <sup>1</sup>
- Comparison: in pre-war London, 65% of households had access to electricity, but only 11% used it for cooking <sup>2</sup>
- But, now electric cooking much more cost-efficient, e.g. EPC = hotplate + insulation + pressure → twice as efficient as a hotplate + cheaper<sup>3</sup>
- Carbon credits

Importance of carbon credits to 'green cookstoves' companies has increased over past years



Source Lean Cooking Alliance. (N=32). The data rely on self-reporting by the companies.





- Around **2.4 billion** people depend on biomass fuel for cooking (UN, 2023)
  - ... YET, almost 2 billion of them are connected to the grid! <sup>1</sup>
- Today, electric cooking much more cost-efficient, e.g.
  EPC = hotplate + insulation + pressure → twice as efficient as a hotplate + cheaper <sup>3</sup>
- Carbon credits
- Other barriers however<sup>4</sup>:
  - ✓ Sticky habits
  - ✓ Unknown (future) benefits
  - ✓ Unreliable products
  - ✓ Intra-household bargaining











 Since 2019, 30,000 hh have gained access to reliable, green, pre-paid electricity from <u>Virunga</u> <u>Energies (VE)</u> → 60,000hh (2025)



- Since 2019, 30,000 hh have gained access to reliable, green, pre-paid electricity from Virunga Energies (VE)  $\rightarrow$  60,000hh (2025)
- Yet, very few rely on electricity for cooking



- Since 2019, 30,000 hh have gained access to reliable, green, pre-paid electricity from Virunga Energies (VE)  $\rightarrow$  60,000hh (2025)
- •-Yet, very few rely on electricity for cooking
- No EPC available on the market



- Since 2019, 30,000 hh have gained access to reliable, green, pre-paid electricity from Virunga Energies (VE)  $\rightarrow$  60,000hh (2025)
- Yet, very few rely on electricity for cooking
- No EPC available on the market
  - RCT to test a distribution model with 100% subsidy (VE)
  - Explore mechanisms that drive adoption (Nudge & voucher)
  - Estimate impact on energy consumption, then derive environmental effects

# Main treatment: EPC (N=1000)

- Beneficiaries receive an Electric Pressure Cooker (worth 80\$) for free
- Primary cook attends a 2-hour demonstration session
- 3 ambassadors visits
- Cookbook in Swahili



### **Recipes & Tips**

## Cook together





#### Electricity Voucher (N=500)

- Encourage trying-out EPC
- Risk-averse budget constrained households
- **5\$ electricity voucher** from Virunga Energies





**Cuisiner avec l'électricité,** c'est protéger l'environnement et soutenir la paix et le développement



#### Environmental nudge (N=500)

- Park ranger present at demonstration session
- Sticker on EPC (nudge)

## Randomized Controlled Trial

- Pre-select 1500 households : Virunga Energies clients (3-30\$ monthly) + charcoal as main fuel
- Pre-intervention survey
- Stratification: charcoal & electricity spending
- Randomization : 1000 EPC + demo
  - + 500 control
- 4 treatment arms (Nudge + voucher)

| Treatment                            |             | Nudge | No nudge | Control |
|--------------------------------------|-------------|-------|----------|---------|
| Free EPC<br>Demo-session<br>Cookbook | Voucher 5\$ | 250   | 250      | No EPC  |
| 1000                                 | No voucher  | 250   | 250      | 500     |

## Randomized Controlled Trial

- Pre-select 1500 households : Virunga Energies clients (3-30\$ monthly) + charcoal as main fuel
- Pre-intervention survey
- Stratification: charcoal & electricity spending
- Randomization : 1000 EPC + demo
  - + 500 control
- 4 treatment arms (Nudge + voucher)
- Cluster randomization (150m)

| Treatment                            |             | Nudge | No nudge | Control |
|--------------------------------------|-------------|-------|----------|---------|
| Free EPC<br>Demo-session<br>Cookbook | Voucher 5\$ | 250   | 250      | No EPC  |
| 1000                                 | No voucher  | 250   | 250      | 500     |



Logistics  $\rightarrow$  2 x 500

## Timeline



### Outcome variables (+ 6 and + 12 months\*)

| Outcome family | Variable                                      |
|----------------|-----------------------------------------------|
| eCooker usage  | • Electricity consumption (VE data).          |
|                | • Number of meals cooked with an EPC (survey) |

### Outcome variables (+ 6 and + 12 months\*)

| Outcome family       | Variable                                      |
|----------------------|-----------------------------------------------|
| eCooker usage        | • Electricity consumption (VE data).          |
|                      | • Number of meals cooked with an EPC (survey) |
|                      | Charcoal consumption (survey)                 |
| Charcoal consumption | Charcoal expenditures (survey)                |
|                      | Weighting ashes (convertion ratio survey)     |

# ASH WEIGHING





#### Household survey data (+ 6 and + 12 months\*)

- 50' survey
- 2 visits: main survey & ashes (+7 days)
- April 2023 & October 2023

### Outcome variables (+ 6 and + 12 months\*)

| Outcome family               | Variable                                                               |
|------------------------------|------------------------------------------------------------------------|
| eCooker usage                | • Electricity consumption (VE data).                                   |
|                              | • Number of meals cooked with an EPC (survey)                          |
|                              | Charcoal consumption (survey)                                          |
| Charcoal consumption         | Charcoal expenditures (survey)                                         |
|                              | Weighting ashes (convertion ratio survey)                              |
|                              | • Whether people agree that one should be free to do certain charcoal- |
| Pro-social / env motivations | related activities in VNP (survey)                                     |
| (Mechanism)                  | Locus of control - environment and peace builling (survey)             |
|                              | • Dictator's game (\$)                                                 |

### Outcome variables (+ 6 and + 12 months\*)

| Outcome family               | Variable                                                               |  |  |
|------------------------------|------------------------------------------------------------------------|--|--|
| eCooker usage                | • Electricity consumption (VE data).                                   |  |  |
|                              | • Number of meals cooked with an EPC (survey)                          |  |  |
|                              | Charcoal consumption (survey)                                          |  |  |
| Charcoal consumption         | Charcoal expenditures (survey)                                         |  |  |
|                              | Weighting ashes (convertion ratio survey)                              |  |  |
|                              | • Whether people agree that one should be free to do certain charcoal- |  |  |
| Pro-social / env motivations | related activities in VNP (survey)                                     |  |  |
| (Mechanism)                  | Locus of control - environment and peace builling (survey)             |  |  |
|                              | • Dictator's game (\$)                                                 |  |  |
| Other socio - economic       | Cooking time (survey)                                                  |  |  |
| outcomes                     | Self-reported health outcomes (survey)                                 |  |  |

$$kwh_{i,t} = \beta_0 + \sum_{t=-6}^{12} \beta_t \cdot Cooker_i, t + \gamma_i + \lambda_t + \epsilon_{i,t}$$



#### **Electricity consumption**

- +10Kw/H electricity monthly (+21%)  $\approx$  \$2,5
- Equivalent of 13,5 FULL meals \*

- 48% of meals (partially) cooked with EPC
- +33,6% elec as primary cooking energy

|                | kwh / month | main enegy elec | meals with EPC ( $\%$ 7d) |
|----------------|-------------|-----------------|---------------------------|
| ITT +12 months | 1           |                 |                           |
| EPC            | 9.871+      | 0.336***        | 0.486***                  |
|                | (5.322)     | (0.028)         | (0.021)                   |
| Mean control   | 47          | 0.03            | 0                         |
| Num.Obs.       | 15610       | 749             | 749                       |
| ATT + 12 month | S           |                 |                           |
| EPC            | 11.975*     | 0.363***        | 0.495***                  |
|                | (5.520)     | (0.028)         | (0.021)                   |
| Mean control   | 47          | 0.02            | 0.02                      |
| Num.Obs.       | 15610       | 749             | 749                       |

## CHARCOAL CONSUMPTION

$$y_i = \beta_0 + \beta_1 \cdot Cooker_i + \gamma X_i + \epsilon_i$$

|                 | ashes      | ashes     | No ashes | Main energy biomass | Spending charcoal |
|-----------------|------------|-----------|----------|---------------------|-------------------|
|                 | (g /day)   | $(\log)$  | (dummy)  | (dummy)             | (usd)             |
| ITT + 12 months | }          |           |          |                     |                   |
| EPC             | -33.590*** | -0.484*** | 0.035**  | -0.321***           | -6.622***         |
|                 | (8.440)    | (0.074)   | (0.012)  | (0.031)             | (0.979)           |
| Mean control    | 116        | 4.53      | 0.04     | 0.9                 | 26.03             |
| Num.Obs.        | 749        | 726       | 749      | 749                 | 749               |
| ATT +12 month   | 8          |           |          |                     |                   |
| EPC             | -40.347*** | -0.542*** | 0.038**  | -0.348***           | -7.076***         |
|                 | (7.930)    | (0.072)   | (0.012)  | (0.032)             | (0.923)           |
| Mean control    | 116        | 4.54      | 0.04     | 0.9                 | 26.01             |
| Num.Obs.        | 749        | 726       | 749      | 749                 | 749               |

-33,5 gr ashes/day (29% reduction) ≈ -507 gr/day

≈ -188 kg/year

- +3,5% no charcoal used
- -6,6\$ charcoal/month (-22% spending)

# BRINGING RESULTS TOGETHER

| Electricity consumption | % meals cooked with<br>EPC | Charcoal consumption | Charcoal spending | LPG spending |
|-------------------------|----------------------------|----------------------|-------------------|--------------|
| +21%   2,5\$            | +48%                       | -29%                 | -22%   -6,6\$     | -1,5\$       |

- Evidence of energy stacking
- EPC used to cook components of meals (rice, foufou, meat, ...)
- Purchase smaller quantities of charcoal at the time more expensive for same weight
- Monthly savings -5,6\$
- Total savings (EPC lifetime 5y)  $\approx 336$

## PRO-SOCIAL MOTIVATIONS

- + 40% donated to charities
- +15% locus of control (1-10)
- 13% less likely to use charcoal from the park
- 47% less likely to claim that making charcoal in VNP = acceptable

#### $y_i = \beta_0 + \beta_1 \cdot Cooker_i + \gamma X_i + \epsilon_i$

|                | Donation | Locus  | Illegal charc | Agree   |
|----------------|----------|--------|---------------|---------|
|                | (usd)    | (1-10) | (dummy)       | (dummy) |
| ITT +12 months |          |        |               |         |

| EPC             | 0.208*  | 0.266+  | -0.075* | -0.123*** |
|-----------------|---------|---------|---------|-----------|
| Mean control    | 0.55    | 1.8     | 0.57    | 0.26      |
|                 | (0.087) | (0.142) | (0.034) | (0.031)   |
| Num.Obs.        | 741     | 745     | 749     | 749       |
| ATT + 12 months | 3       |         |         |           |
| EPC             | 0.251** | 0.386** | -0.078* | -0.152*** |
|                 | (0.084) | (0.139) | (0.035) | (0.030)   |
| Mean control    | 0.55    | 1.8     | 0.57    | 0.27      |
| Num.Obs.        | 741     | 745     | 749     | 749       |

Note: Stratification variables are included in controls.

Columns (3) and (4) report the marginal effect calculated at mean. Standard errors clustered at the randomization cluster level. +=.1, \*=.05, \*\*=.01, \*\*\*=0.001.

## RANDOMIZED CONTROLLED TRIAL

- Pre-select 1500 households : Virunga Energies clients (3-30\$ monthly)
- Pre-intervention survey
- Stratification: charcoal & electricity spending
- Randomization : 1000 EPC + demo

+ 500 control

- 4 treatment arms (Nudge + voucher)
- Cluster randomization (150m)





### IMPACT OF FINANCIAL INCENTIVE

\$5 of free electricity, control = cooker

➡ Zero impact





Months to treatment

### IMPACT OF FINANCIAL INCENTIVE

 $y_i = \beta_0 + \beta_1 \cdot Cooker_i + \beta_2 \cdot Voucher_i + \gamma X_i + \epsilon_i$ 

| ¢ ⊑              | Variable                      | Mean Cooker no voucher | Voucher $(\beta_2)$ | p-value |
|------------------|-------------------------------|------------------------|---------------------|---------|
| φο or tree       | Meals with EPC (% 7d)         | 0.439                  | -0.002              | 0.972   |
| electricity,     | Main energy electricity       | 0.489                  | -0.001              | 0.984   |
| control = cooker | Meals with charcoal (% 7d)    | 0.557                  | 0.021               | 0.548   |
|                  | Main energy charcoal          | 0.443                  | 0.007               | 0.870   |
| ➡ Zero impact    | Daily Ashes (g - prelim)      | 82.423                 | 15.704              | 0.113   |
|                  | Charcoal spending Month (usd) | 21.117                 | 1.551               | 0.327   |
|                  | Main energy LPG               | 0.051                  | -0.020              | 0.347   |
|                  | Daily cooking time (min)      | 157.959                | 7.982               | 0.250   |
|                  | Food security (FAO)           | 42.215                 | 0.111               | 0.890   |
|                  | Reported illness              | 0.930                  | 0.155               | 0.241   |

### IMPACT OF ENVIRONMENTAL TRAINING

Imprecise zero

Impact of Env. Educ (conditional on Cooker)



### IMPACT OF ENVIRONMENTAL TRAINING

 $y_i = \beta_0 + \beta_1 \cdot Cooker_i + \beta_2 \cdot EducEnv_i + \gamma X_i + \epsilon_i$ 

| Additional   | Variable                      | Mean Cooker -no Educ | Env. Educ ( $\beta_2$ ) | p-value |  |
|--------------|-------------------------------|----------------------|-------------------------|---------|--|
| impact on    | Meals with charcoal (% 7d)    | 0.603                | -0.065                  | 0.065   |  |
| reduction    | Main energy charcoal          | 0.503                | -0.087                  | 0.04    |  |
| charcoal use | Charcoal spending Month (usd) | 22.667               | -1.398                  | 0.377   |  |
| and time     | Daily Ashes (g)               | 104.946              | -26.759                 | 0.007   |  |
| savings      | Main energy LPG               | 0.041                | 0.008                   | 0.770   |  |
|              | Daily cooking time (min)      | 173.511              | -21.177                 | 0.003   |  |
|              | Reported illness              | 1.007                | 0.004                   | 0.975   |  |
|              | Food security (FAO)           | 41.993               | 0.513                   | 0.532   |  |

#### COST

Cost per cooker (cooker + transport + distribution + ½ voucher + ambassadors visits) = **\$94** 

Marginal cost of selling electricity to a connected household = **\$ 0** 

#### Private benefits

Electricity consumption : +10kwh /mo.

#### COST

Cost per cooker (cooker + transport + distribution + ½ voucher + ambassadors visits) = **\$94** 

Marginal cost of selling electricity to a connected household = **\$ 0** 

- For hh: \$5.6 savings/mo = \$302 over 5 yrs (10% discount rate)
- For firm: 1kwh = 0.21usd of revenues  $\rightarrow$  \$2.5/mo = \$150 over 5 years

#### Private benefits

#### COST

Cost per cooker (cooker + transport + distribution + ½ voucher + ambassadors visits) = **\$94** 

Marginal cost of selling electricity to a connected household = **\$ 0**  Electricity consumption : +10kwh /mo.

- For hh: \$5.6 savings/mo = \$302 over 5 yrs (10% discount rate)
- For firm: 1kwh = 0.21usd of revenues  $\rightarrow$  \$2.5/mo = \$150 over 5 years

#### Social benefits

- Charcoal : -33,5g ashes/day  $\rightarrow$  -15,7kg charcoal/month = **943kg/5 years**
- 500 EPC = 1-2ha of avoided deforestation (biodiversity, to be refined + general equilibrium effect)

#### Private benefits

#### COST

Cost per cooker (cooker + transport + distribution + ½ voucher + ambassadors visits) = **\$94** 

Marginal cost of selling electricity to a connected household = \$ 0 Electricity consumption : +10kwh /mo.

- For hh: \$5.6 savings/mo = \$302 over 5 yrs (10% discount rate)
- For firm: 1kwh = 0.21usd of revenues  $\rightarrow$  \$2.5/mo = \$150 over 5 years

#### Social benefits

- Charcoal : -33,5g ashes/day  $\rightarrow$  -15,7kg charcoal/month = **943kg/5 years**
- 500 EPC = 1-2ha of avoided deforestation (biodiversity, to be refined + general equilibrium effect)
- LCA: <u>1 EPC ~ 6,3t CO2e</u> avoided (Social Benefit ~ \$315 for a SCC of \$50) (using FAO 2017)

### (NON-)MONETARY BENEFITS

- Comparison Ecooker-Charcoal among beneficiaries
  - ✓ 88% find Ecooker cheaper
  - ✓ 90% find Ecooker faster (-26min daily, 83% multitask)
  - $\checkmark$  90% find Ecooker easier to use
- Changes in daily life?
  - ✓ Cleaner (Air + dirt)
  - ✓ Faster
  - ✓ Safer

#### Informing EPC upscaling

#### Informing EPC upscaling

#### WP1: Deepening

Exploring potential of larger EPCs in Goma



#### Informing EPC upscaling

WP1: Deepening

Exploring potential of larger EPCs in Goma



WP2: Broadening

Expanding EPC distribution to rural areas



| Informing EPC upscaling                       |                                              |                                                 |  |  |  |  |  |  |
|-----------------------------------------------|----------------------------------------------|-------------------------------------------------|--|--|--|--|--|--|
| WP1: Deepening                                | WP2: Broadening                              | WP3: Maintaining                                |  |  |  |  |  |  |
| Exploring potential of<br>larger EPCs in Goma | Expanding EPC distribution<br>to rural areas | Experimenting with repair & maintenance service |  |  |  |  |  |  |
| EPC<br>EPC                                    | RURAL                                        |                                                 |  |  |  |  |  |  |

| Informing EPC upscaling                       |                                              |                                                 |                                       |  |  |  |  |  |
|-----------------------------------------------|----------------------------------------------|-------------------------------------------------|---------------------------------------|--|--|--|--|--|
| WP1: Deepening                                | WP2: Broadening                              | WP3: Maintaining                                | WP4: Marketing                        |  |  |  |  |  |
| Exploring potential of<br>larger EPCs in Goma | Expanding EPC distribution<br>to rural areas | Experimenting with repair & maintenance service | Examining WTP and its<br>determinants |  |  |  |  |  |
| EPC EPC                                       | RURAL                                        |                                                 | J<br>T<br>T<br>T<br>T<br>T            |  |  |  |  |  |

# Any questions?



Virunga Foundation (DEVCO / USAID grants) = cookers and staff



FID (Impact evaluation)



PEDL & CDC (Co-financing impact evaluation)



FWO (Wages Antwerp team)

## Balance check

|                                    | Control (N=560) |           | EPC   | (N=1034)  |                |            |
|------------------------------------|-----------------|-----------|-------|-----------|----------------|------------|
|                                    | Mean            | Std. Dev. | Mean  | Std. Dev. | Diff. in Means | Std. Error |
| Gender (Female $= 1$ )             | 0.90            | 0.30      | 0.86  | 0.35      | -0.04*         | 0.02       |
| Age                                | 37.33           | 12.48     | 38.48 | 12.73     | 1.15 +         | 0.66       |
| HH size                            | 8.34            | 3.05      | 8.31  | 3.07      | -0.04          | 0.16       |
| Number lunches / week              | 6.26            | 1.97      | 6.27  | 2.00      | 0.01           | 0.10       |
| Ladder life (Cantril)              | 4.47            | 1.29      | 4.37  | 1.25      | -0.10          | 0.07       |
| Electricity $2^{nd}$ source energy | 0.17            | 0.37      | 0.15  | 0.35      | -0.02          | 0.02       |
| Food consumption score (FAO)       | 40.79           | 7.98      | 40.12 | 7.92      | -0.67          | 0.42       |
| Index goods ownership              | 4.68            | 1.15      | 4.58  | 1.11      | -0.09          | 0.06       |

#### Cookers and electricity consumption 6 and 12 months after intervention

|              | kwh / month | main enegy elec | meals with EPC (% 7d) | ŀ               | wh / month | main enegy elec | meals with EPC (% 7d) |
|--------------|-------------|-----------------|-----------------------|-----------------|------------|-----------------|-----------------------|
| ITT +6 month | 5           |                 |                       | ITT + 12 months | 3          |                 |                       |
| EPC          | 10.960***   | 0.485***        | 0.432***              | EPC             | 9.871+     | 0.336***        | 0.486***              |
|              | (2.441)     | (0.026)         | (0.023)               |                 | (5.322)    | (0.028)         | (0.021)               |
| Mean control | 46          | 0               | 0                     | Mean control    | 47         | 0.03            | 0                     |
| Num.Obs.     | 17309       | 750             | 753                   | Num.Obs.        | 15610      | 749             | 749                   |
| ATT +6 month | 15          |                 |                       | ATT +12 month   | S          |                 |                       |
| EPC          | 11.387***   | 0.514***        | 0.464***              | EPC             | 11.975*    | 0.363***        | 0.495***              |
|              | (2.460)     | (0.026)         | (0.023)               |                 | (5.520)    | (0.028)         | (0.021)               |
| Mean control | 47          | 0.01            | 0                     | Mean control    | 47         | 0.02            | 0.02                  |
| Num.Obs.     | 17309       | 750             | 753                   | Num.Obs.        | 15610      | 749             | 749                   |

Note: Stratification variables are included in controls. Standard errors clustered at the randomization cluster level. +=.1, \*=.05, \*\*=.01, \*\*\*=0.001

#### Cookers and charcoal consumption 6 and 12 months after intervention

|                | ashes      | ashes     | ashes    | Main energy biomass | Spending charcoal |                | ashes      | ashes     | ashes   | Main energy biomass | Spending charcoal |
|----------------|------------|-----------|----------|---------------------|-------------------|----------------|------------|-----------|---------|---------------------|-------------------|
|                | (g / day)  | $(\log)$  | (dummy)  | (dummy)             | (usd)             |                | (g/day)    | $(\log)$  | (dummy) | (dummy)             | (usd)             |
| ITT +6 months  |            |           |          |                     |                   | ITT +12 months | 3          |           |         |                     |                   |
| EPC            | -41.473*** | -0.408*** | 0.054*** | -0.437***           | -6.635***         | EPC            | -33.590*** | -0.484*** | 0.035** | -0.321***           | -6.622***         |
|                | (8.732)    | (0.070)   | (0.015)  | (0.030)             | (1.151)           |                | (8.440)    | (0.074)   | (0.012) | (0.031)             | (0.979)           |
| Mean control   | 136        | 4.66      | 0.02     | 0.9                 | 29.54             | Mean control   | 116        | 4.53      | 0.04    | 0.9                 | 26.03             |
| Num.Obs.       | 753        | 713       | 753      | 750                 | 753               | Num.Obs.       | 749        | 726       | 749     | 749                 | 749               |
| ATT + 6 months |            |           |          |                     |                   | ATT +12 month  | 5          |           |         |                     |                   |
| EPC            | -47.200*** | -0.472*** | 0.056*** | -0.456***           | -7.439***         | EPC            | -40.347*** | -0.542*** | 0.038** | -0.348***           | -7.076***         |
|                | (8.235)    | (0.068)   | (0.014)  | (0.030)             | (1.086)           |                | (7.930)    | (0.072)   | (0.012) | (0.032)             | (0.923)           |
| Mean control   | 136        | 4.68      | 0.02     | 0.9                 | 29.67             | Mean control   | 116        | 4.54      | 0.04    | 0.9                 | 26.01             |
| Num.Obs.       | 753        | 713       | 753      | 750                 | 753               | Num.Obs.       | 749        | 726       | 749     | 749                 | 749               |

Note: Stratification variables are included in controls. Standard errors clustered at the randomization cluster level. +=.1, \*=.05, \*\*=.01, \*\*\*=0.001

## Heterogeneity



- Entire distribution moved
- Baseline wealth, family size, electricity consumption etc don't explain much of the observed adoption (regression setting)
- 20% of beneficiaries are using the cookers occasionally or not using it
- Exploratory PCA : 6 8 quite different subgroups, including poor households with high usage
- +12mo : +10% of the cookers not functioning (but easily repairable)

## Breakdown & repairs

- 84% (353) des cuiseurs fonctionnent parfaitement, 15% (63) ont un problème. Parmi ceux-là, il est complètement hors d'usage pour 44 ménages (70%), et utilisable avec des limitations pour 27% d'entre eux (17). Utilisable occasionnellement pour 2 (3%).
- □ Since distribution: 161/419 (38%) ont eu un problème technique au moins une fois. Parmi ces 161: 48.5% ont eu des problèmes de multiprise/cable
- Parmi ces 161, 98 (61%) ont cherché une solution et, 91 (57%) disent que le problème a été résolu.
- En moyenne, la réparation a couté 2.9\$. Mais sur les 35 (39%) n'ont pas du payer du tout, donc en excluant les réparations gratuites, on arrive à 4.8\$ en moyenne de réparations.
- Parmi ceux qui ont fait réparer, 26.5% ont été dans un repair shop, 17% l'ont réparé eux-mêmes, 16% ont demandé à des proches bricoleurs, 11% électronicien, et 29% autre(achat de nouveau multiprise ou appel aux réparateurs virunga pour la majorité de ce groupe)
- La principale raison citée pour n'avoir pas cherché à le faire réparer est que les bénéficiaires ne savaient pas ou aller le faire réparer (50%). Dans 13% des cas, l'appareil fonctionnait quand meme,11% mentionnent un oubli, et 9.5% n'avaient pas les moyens.
- Les gens payent en moyenne 18.3% du prix d'achat d'un appareil pour le faire réparer. -> 12-13\$ pour les cuiseurs







### Research objectives & contribution

- RCT to test a distribution model of EPC with a 100% subsidy
- Estimate impact on energy consumption & development outcomes, then derive environmental effects
- Explore mechanisms that may enhance adoption:
  - **5USD electricity voucher** to encourage risk-averse hhs to try out the EPC
  - an environmental awareness training to test whether knowledge about social costs increases adoption

