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ABSTRACT: This paper shows that in�ation expectations and those embedded in short-term interest

rate expectations as reported in the Survey of Professional Forecasters show evidence of misaligned expecta-

tions. This misalignment seems to have been substantial in recent times, featuring a low correlation between

in�ation and the policy rate (i.e. the Gibson paradox). This empirical evidence motivates an alternative ex-

planation, based on uncertainty rather than risk, of the bond term premium measures found in the literature.

This paper estimates an expectational term premium driven by misaligned short-term interest rate expecta-

tions from a medium-scale DSGE model, which introduces uncertainty by assuming adaptive learning (AL)

with discretional beliefs. The estimated 10-year expectational term premium shares important features with

the corresponding term premium measures obtained in the literature using no-arbitrage a�ne term structure

models. Thus, the expectational term premium is sizable, highly persistent, and mildly countercyclical. More

important, this expectational AL term premium is highly correlated with term premium measures obtained

from no-arbitrage a�ne models in the most recent period studied. In short, the estimation results suggest

that model uncertainty provides an important channel for explaining the bond premium measures lately by

introducing a potential misalignment of short-term interest expectations with in�ation expectations.
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1 Introduction

The bond term premium is de�ned as the wedge between a long-term yield and the average

of policy rate expectations�i.e. the yield implied by the expectation hypothesis of the

term structure (EHTS)� over the life of the long-term bond. Thus, the size of the term

premium signals the e�ectiveness of the policy rate (and the forward guidance in shaping

policy rate expectations) in a�ecting the yield curve. The term premium is typically viewed

as the additional return (a risk premium) that investors demand to compensate them for

the risk associated with a long-term bond. The term premium is not observable, but it is

typically estimated using no-arbitrage a�ne models (Kim and Wright, 2005; and Adrian,

Crump, and Moench, 2013) featuring a small number of risk (pricing) factors, in which the

parameters linking linearly these factors and bond yields are restricted to eliminate any

source of arbitrage opportunities. The rational expectations DSGE literature has struggled

to generate term premiums with the size and the appropriate dynamic features of those

estimated using no-arbitrage a�ne models (Rudebusch and Swanson, 2012; Lucas, 2003).

Rather than seeing the term premium as only a risk premium, I argue that the esti-

mated term premium measures obtained from no-arbitrage a�ne models may incorporate

uncertainty, in addition to risk, in their latent estimated factors.1 In order to analyze this

hypothesis, this paper characterizes an endogenous expectational adaptive learning term pre-

mium, de�ned as the wedge between the (optimal) nominal yield associated with the j-period

maturity bond determined by a DSGE model and the yield implied by the EHTS, where the

two yields are obtained under the assumption of adaptive learning (AL) with discretional

beliefs described below. In contrast to the standard view of the bond term premium as a

compensation for risk, this expectational term premium is driven by model uncertainty mod-

1A standard distinction between these two concepts can be described as follows. Risk refers to a scenario
under which the decision outcomes and their probabilities of occurrences are known to the decision-maker,
while uncertainty refers to a scenario under which that information is not available to the decision-maker
(Knight, 1921). Under rational expectations, decision-makers are usually assumed to know the true data
generating process, so uncertainty is ruled out. However, uncertainty may come into play when departures
from the rational expectations assumption are considered.
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eled here through the AL assumption, which results in a misalignment between the in�ation

expectations of agents and those embedded in short-term interest (policy rate) expectations.2

Interestingly, I �nd that average survey-based measures of in�ation expectations and short-

term interest rate expectations as reported in the Survey of Professional Forecasters (SPF)

show evidence of misaligned interest rate expectations in recent times. More precisely, there

is a misalignment between survey-based 1-year-ahead in�ation forecasts and those in�ation

forecasts implied by survey-based short term policy rate forecasts computed through the lens

of a log-linearized asset pricing model. This is a novel �nding, which challenges the e�ec-

tiveness of forward guidance (i.e. timely communication from central banks about the future

course of monetary policy) in leading the public's in�ation expectations.

Seeking to provide a novel approach to explaining the bond term premium based on

bounded rationality and model uncertainty, this paper estimates a term premium from an

estimated DSGE model extended with the term structure of interest rates, assuming adap-

tive learning (AL) expectations. In this AL framework, agents do not know the structure

of the economy, so they face a major source of uncertainty which is ignored in standard ap-

proaches built on the rational expectations (RE) hypothesis. Following Aguilar and Vázquez

(2021) and Vázquez and Aguilar (2021), I assume that AL expectations are based on small

forecasting models as in Slobodyan and Wouters (2012a,b), where the expectation of each

forward-looking variable in the DSGE model is described as a least-squares projection on

a small information set given by the contemporaneous and �rst-lag values of the forward-

looking variable.3 Moreover, the small forecasting models are augmented with term structure

information, and it is assumed that agents' expectations of a forward-looking variable at

short-term forecast horizons do not necessarily lead to consistent predictions of the variable

far into the future as implied by the law of iterated expectations used in other approaches to

2The approach followed here is in sharp contrast to a related paper by Vázquez and Aguilar (2021), who
characterize an exogenous AL term premium as the wedge between the actual yield of the j-period maturity
bond and the yield implied by the EHTS, which means that they then ignore misaligned expectations.

3This approach is associated with the broad class of restricted perception equilibriums, where agents
consider a misspeci�ed model but form their beliefs optimally given the misspeci�cation (Sargent, 1991;
Hommes and Sorger, 1998; Evans and Honkapohja, 2012).
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AL.4 I refer to these AL expectations, characterizing a precise form of uncertainty, as discre-

tional beliefs. These assumptions on beliefs are in line with the evidence provided by Froot

and Ito (1989) that short term investors' expectations are not consistent with their long-term

expectations. In particular, they �nd that short term investors' expectations overreact to

current shocks when compared with their long-term expectations. They are also in line with

how panelists in the SPF behave in changing their methods with the forecast horizon as

pointed out in Stark (2013).5 Most importantly, abandoning the law of iterated expectations

is crucial in characterizing a potential misalignment of short-term interest rate expectations,

which generate the expectational AL term premium suggested in this paper.

Readers might wonder whether the small forecasting models used in the AL approach

considered here are too �exible by adding degrees of freedom on the information set that

agents are using in their forecasting models. However, this concern does not seem to be an

important empirical issue for several reasons (some of them already pointed out in Slobodyan

and Wouters, 2012): First, the data is shown to be informative on the small forecasting mod-

els considered in the AL approach followed here. Thus, the additional �exibility provided

by simple forecasting models is optimally used to �t the overall model on the data while

avoiding ending up in an unidenti�ed model. Moreover, larger forecasting models include

more variables in the information set, and thus feature higher parameter uncertainty and

potentially more instability in the updating process. This over�tting problem certainly in-

troduces a bias toward smaller forecasting models. It turns out that a small forecasting model

based only on term spread information mainly captures learning dynamics, while the type

4More precisely, I consider an AL approach based on direct multi-step forecasting (Bhansali, 2002; Jordà,
2005) to characterize the multi-period-ahead expectations of forward-looking variables that show up when
the DSGE model is extended with the term structure of interest rates. This contrasts with the approach
followed in the related AL literature, which uses iterated forecasts built in general on a misspeci�ed model. As
discussed by Jordà (2005), among others, direct forecasts associated with multi-period horizons outperform
iterated forecasts in dealing with misspeci�ed models since misspeci�cation errors are compounded with the
forecast horizon. Direct multi-step forecasting introduces additional �exibility which is not taken into account
when iterated forecasts are considered, and that extra �exibility results in a better model �t (Aguilar and
Vázquez, 2021).

5The failure of the law of iterated expectations could also show up under RE whenever investors have
heterogeneous information sets. An example of this approach is followed in Barillas and Nimark (2019).
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of small forecasting model based on second order autoregressive processes used in Slobodyan

and Wouters (2012) plays a rather minor role in our estimated DSGE model under AL with

arbitrary beliefs. As pointed out in Aguilar and Vázquez (2021), simple forecasting models

based only on term structure information perform well because the time-varying intercepts in

them capture the long-run features of data well, such as the downtrend exhibited by in�ation

and the short-term interest rate in the early 1980s. Meanwhile, the time-varying learning

coe�cients associated with term spreads capture short-run macroeconomic �uctuations rel-

atively well (for instance, those featuring the growth rates in consumption and investment).

Second, the estimates of structural parameters and the identi�cation of shocks do not seem to

be very sensitive to the forecasting model considered. Third, average survey-based measures

of short-term interest expectations and in�ation expectations obtained from the SPF are also

included in the set of observables used in the estimation procedure in order to discipline the

learning parameters featuring small forecasting models and their updating processes. Hence,

the discretional beliefs identi�ed in the estimation procedure are to some extent aligned with

survey-based expectations. Finally, it is important to emphasize that the term premium mea-

sures obtained from estimated no-arbitrage a�ne models do not enter into the estimation

procedure used here; rather, they are only used to assess the expectational AL term premium

generated as an estimated latent variable in the estimation procedure. Hence, both the esti-

mated small forecasting models and the potential failure of the law of iterated expectations

are assumptions which are empirically falsi�able by assessing the ability of the estimated AL

term premium measure to reproduce the dynamic features characterizing the term premiums

obtained from no-arbitrage a�ne models.

The AL-DSGE model is estimated using US quarterly data for 1983:2-2017:3. The esti-

mation results show that the estimated expectational term premium obtained under AL with

discretional beliefs shares some features with those estimated in the related literature, such

as those suggested by Kim and Wright (2005) and Adrian, Crump, and Moench (2013) using

no-arbitrage a�ne models. Thus, the estimated expectational AL term premium is sizable,
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highly persistent, and mildly countercyclical; but it shows a rather low correlation with term

premium measures obtained from no-arbitrage a�ne models. However, the picture changes

quite dramatically if attention is focused on recent times. Thus, the estimated 10-year ex-

pectational AL term premium is highly correlated (0.82) with the Adrian-Crump-Moench

term premium and more moderately correlated with the Kim-Wright term premium (0.71)

for 2001:1-2017:3, while the correlation between the term premiums from the two a�ne mod-

els is 0.80 in that period. Hence, the misaligned policy rate expectations captured by the

expectational AL term premium with discretional beliefs seem to be substantial in recent

times, and the Adrian-Crump-Moench model is somewhat better able to capture this decou-

pling of nominal expectations than the Kim-Wright model. Moreover, the evidence found on

misaligned policy rate expectations challenges the e�ectiveness of recent forward guidance as

a monetary policy tool to some degree. This misalignment seems to be linked to the low cor-

relation between in�ation and the short-term nominal interest rate (i.e. the Gibson paradox)

found in Cogley, Sargent, and Surico (2012) and Casares and Vázquez (2018), which shows

the limitations at controlling in�ation through an orthodox monetary policy based on policy

rate adjustments.

Variance decomposition analysis shows that wage markup shocks, investment-speci�c

technology shocks, and monetary policy shocks between them explain around 95% of the

�uctuations in the 10-year expectational AL term premium, and hence the long-term expec-

tation misalignment, but their relative contributions change quite dramatically depending

on the forecast horizon considered in the variance decomposition. Thus, the main drivers of

short-term �uctuations in the expectational AL term premium are monetary policy shocks

(67.3%), while the contributions of wage markup shocks and investment-speci�c technology

shocks are much smaller at 22.7% and 3.7%, respectively. These results change dramatically

when the unconditional variance decomposition is analyzed: Investment technology shocks

then explain 85.1% of the long-term �uctuations in the expectational AL term premium,

while the contributions of policy shocks and wage markup shocks drop substantially to 6.8%
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and 4.5%, respectively.

In sum, these �ndings suggest that model uncertainty, illustrated in this paper by the

presence of a representative agent who forms expectations using an AL scheme with discre-

tional beliefs, provides an alternative interpretation of the bond premium measures found in

the literature which is in contrast to other features �such as consumer preferences featuring

high-level risk aversion� assumed in DSGE frameworks to generate sizable term premium

�uctuations. In particular, these �ndings provide empirical support for the hypothesis put

forward in the literature (Barillas, Hansen, and Sargent, 2009; Rudebusch and Swanson,

2012; among others) that model uncertainty is an alternative to the unpleasantly large risk

aversion parameters of 50 or 100 needed in RE-DSGE models to �t the data as criticized in

Lucas (2003).

The rest of the paper is structured as follows. Section 2 reviews some issues in the term

premium and AL branches of literature. Section 3 describes a simple model to illustrate how

misaligned nominal expectations result in an expectational term premium and provides some

preliminary evidence based on survey-based forecasts reported in the SPF. Section 4 considers

a DSGE model extended with the term structure of interest rates and derives an expectational

term premium under AL with discretional beliefs. Section 5 shows the estimation results of

the DSGE model and discusses their implications. Section 6 analyzes the dynamic features

of the AL term premium estimated here in comparison with those estimated in the related

literature. Section 7 concludes.

2 Related literature

This section links the contribution of this paper to two branches of literature.

Financial premium literature

Structural macroeconomic literature has broadly taken two approaches to explaining �nan-

cial premiums, as summarized in Kliem and Meyer-Gohde (2021). One approach incorpo-
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rates �nancial market frictions and/or segmented markets (e.g. Gertler and Karadi, 2011;

Carlstrom, Fuerst, and Paustian, 2017; Sims and Wu, 2021) that restrain �nancial mar-

ket participants and generate premiums as spreads between market rates (e.g. of di�erent

maturities) and the risk-free, short-term rate. Such premiums are risk-neutral expected

losses from, say, default, which leads to the second approach taken in the literature: In that

second approach, time-varying term premiums result from the pricing via the stochastic dis-

count factor of endogenous conditional heteroskedasticities generated by the nonlinearities

in the model (e.g. Rudebusch and Swanson, 2012). This approach views term premiums on

medium- and long-term nominal bonds as compensations for the in�ation and consumption

risks faced by investors over the lifespans of bonds. There is a large body of literature that

�nds that estimated 10-year term premium measures obtained from no-arbitrage a�ne term

structure models are sizable, persistent, and �uctuate signi�cantly over time (e.g. Gürkaynak

and Wright, 2012 and references therein). However, standard macroeconomic DSGE models

based on the RE hypothesis �nd it hard to explain term premium dynamics. For instance,

Rudebusch and Swanson (2012) make progress by combining several features: (i) Epstein-Zin

preferences (Epstein and Zin, 1989), so risk aversion can be modeled independently from the

intertemporal elasticity of substitution; (ii) a third-order approximation;6 (iii) both long-

run real (as in Bansal and Yaron, 2004) and nominal risks; and (iv) a huge risk aversion.

Using similar RE-DSGE models, Dew-Becker (2014), Kliem and Meyer-Gohde (2021), and

Amisano and Tristani (2023) estimate term premium measures with rather distinctive empir-

ical features.7 In spite of the progress made in this literature, all these (estimated/calibrated)

DSGE models rely on an unpleasantly large risk aversion parameter, which is needed to over-

come the lack of model uncertainty implied by the RE hypothesis in the characterization of

6In this class of model, a �rst-order approximation eliminates the term premium entirely due to the well-
known property of certainty equivalence in linearized RE models. Indeed, a third-order approximation is
needed to obtain a (model-based) time-varying term premium (Rudebusch and Swanson, 2008).

7Thus, the latter two reproduce the mild downward trend displayed by the estimated term premium
measures obtained from no-arbitrage a�ne term structure models since the early 1980s (for instance, Adrian,
Crump, and Moench, 2013) quite well. However, the term premium estimated by Dew-Becker (2014) shows
an upward trend, at least at the start of the Great Moderation period, which is in contrast to other term
premium measures.
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term premium dynamics. One important exception is the paper by Andreasen, Fernández-

Villaverde, and Rubio-Ramírez (2018): They use a GMM method to estimate the pruned

state-space system for a third-order perturbation approximation to a New Keynesian model

with Epstein�Zin preferences that includes feedback e�ects from long-term bonds to the real

economy, enabling them to match the level and variability of the 10-year term premium with

a low relative risk aversion of 5.

Adaptive learning literature

As pointed out by Adam and Marcet (2011), AL literature takes the �rst-order optimality

conditions that emerge under RE and replaces the conditional RE operator, Et, in those

optimality conditions by an AL conditional expectations operator, EAL
t . Standard AL ap-

proaches typically assume that the law of iterated expectations implied by the RE hypothesis

also holds for the subjective expectations of the representative agent under AL (Honkapojha,

Mitra, and Evans, 2003). Imposing the law of iterated expectations on AL conditional expec-

tations has led to some con�icting results, as described in Adam and Marcet (2011). For in-

stance, Adam, Marcet, and Nicolini (2016) consider the one-step-ahead asset pricing equation

Pt = δEAL
t (Pt+1+Dt+1) and show that a variety of stylized asset pricing facts can be explained

if agents are learning about future price behavior. By contrast, Timmermann (1996) and oth-

ers impose the law of iterated expectations and study the implied relationship between the

stock price and the expected discounted sum of dividends (Pt = EAL
t

∑∞
j=1 δ

jDt+j), which

results in a much weaker impact on stock prices from dividend learning behavior. Evans

and Honkapohja (2003) are much closer to the monetary DSGE framework considered in

this paper: They consider AL in one-step-ahead Euler optimality conditions. Preston (2005)

shows that learning outcomes also di�er in models of this type when the one-step-ahead Euler

optimality conditions are iterated forward based on the law of iterated expectations. Interest-

ingly, Adam and Marcet (2011) strongly argue that (one-step-ahead) Euler equations under

AL�rather than optimality conditions derived through the application of the law of iterated

expectations� are less ad-hoc from a microfoundation perspective of the consumption-based

9



asset pricing model. More precisely, Adam and Marcet (2011) suggest that the law of iter-

ated expectations may fail under realistic circumstances such as imperfect market knowledge

and the lack of common knowledge on agents' beliefs and preferences. Thus, a marginal

agent that prices a stock or bond in actual markets is changing with time, and given that

agents hold heterogeneous beliefs, the equilibrium price is determined by expectations based

on di�erent probability measures in each period. As a result, the iteration forward on the

one-step-ahead pricing equation may not properly represent agents' optimal pricing decisions.

Adam, Marcet, and Beutel (2017) make further progress on these asset price determination

issues.8

This paper is also related to recent papers by Aguilar and Vázquez (2021) and Vázquez

and Aguilar (2021) that estimate log-linear DSGE models under AL using the type of small

forecasting models considered here. In sharp contrast to those two papers, here the EHTS

is not imposed in determining the long-term bond yields. This results in an endogenous

expectational bond term premium de�ned as the di�erence between the yield implied by the

standard consumption-based asset pricing equation under AL and the yield implied by the

EHTS.9

8Kozicki and Tinsley (2005) is an early paper that considers adaptive expectations (rather than the AL
used here) to characterize term structure dynamics. More speci�cally, its authors consider a model where
the EHTS is imposed (i.e. long-term interest rates are given by agents' beliefs about expected average
future short-term rates), but in which adaptive beliefs are determined by agents' perceptions of the central
bank's long-run in�ation target. As discussed in Gürkaynak and Wright (2012), there is a related literature
that seeks to explain term structure anomalies in terms of shifting perceptions of the central bank's long-run
in�ation target. More recently, Sinha (2015, 2016) also investigates the implications of AL for the yield curve.
However, her approach to AL is rather di�erent from the one followed here, as discussed below. Moreover,
her papers do not address the implications of AL for the estimated bond term premium.

9This paper also considers an extended sample period (1983-2017) that includes the Great Recession,
whereas the other two papers consider a di�erent sample period that includes the Stag�ation period of the
1970s and the early 1980s and �nishes at the end of the Great Moderation period (around 2008).
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3 A simple model of misaligned expectations and some

preliminary evidence

The standard consumption-based asset pricing equation associated with each maturity is

obtained from the �rst-order conditions that characterize the optimal decisions of the repre-

sentative consumer endowed with discretional beliefs:

ED
t

M{j}
t

(
1 +R

{j}
t

)j
∏j

k=1 (1 + πt+k)

 = 1, for j = 1, 2, ..., n,

where ED
t de�nes a discretional expectations operator,10M

{j}
t = βj

UC,t+j
UC,t

is the stochastic

discount factor (i.e. the pricing kernel) associated with a j-period maturity bond, β is the

subjective discount factor, UC,t denotes the marginal utility of consumption at time t, and Ct,

πt, and R
{j}
t denote consumption, the rate of in�ation, and the nominal yield associated with

the j-period maturity bond, respectively. The set of non-linear optimality conditions clearly

shows that current consumption, Ct, and the yields associated with alternative maturity

bonds, R
{j}
t , which are priced at time t, are determined by the expected paths of future

consumption, and in�ation. R
{j}
t is known at time t, so the set of the optimality conditions

can be written as

(
1 +R

{j}
t

)j
ED
t

[
M
{j}
t

1∏j
k=1 (1 + πt+k)

]
= 1, for j = 1, 2, ..., n, (1)

Using the expression for the conditional covariance between the pricing kernel, M
{j}
t , and the

inverse of in�ation over the lifetime of the bond, 1∏j
k=1(1+πt+k)

, equation (1) can be written as

ED
t

(
M
{j}
t

)
ED
t

[
1∏j

k=1 (1 + πt+k)

]
+ covt

(
M
{j}
t ,

1∏j
k=1 (1 + πt+k)

)
=
(

1 +R
{j}
t

)−j
. (2)

10By a �discretional expectations operator�, I mean an expectations operator that deviates from the stan-
dard RE expectations operator and, in addition, does not satisfy the law of iterated expectations.
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In contrast to the related literature, and in order to focus on the alternative interpretation of

the term premium based on expectation misalignment driven by model uncertainty, I ignore

here the covariance term which captures the standard interpretation of a term premium as a

compensation for risk�i.e. I impose that covt

(
M
{j}
t , 1∏j

k=1(1+πt+k)

)
= 0. This restriction can

simply be imposed by taking (natural) logs in equation (1) and ignoring Jensen's inequality

of expectation as follows:

jR
D{j}
t + ED

t m
{j}
t −

j∑
k=1

ED
t πt+k = 0,

or

R
D{j}
t =

1

j

(
j∑

k=1

ED
t πt+k − ED

t m
{j}
t

)
, (3)

where m
{j}
t = log

(
M
{j}
t

)
. Notice that I have added the superscript �D� to the nominal yield

of the j-period maturity bond to emphasize that this yield is obtained under discretional

learning.

I de�ne the expectational term premium of the j-period bond as

TP
D{j}
t ≡ R

D{j}
t − 1

j

j−1∑
k=0

ED
t R

{1}
t+k. (4)

Substituting equation (3) into (4) gives

TP
D{j}
t =

1

j

(
j∑

k=1

ED
t πt+k

)
− 1

j

(
j−1∑
k=0

ED
t R

{1}
t+k + ED

t m
{j}
t

)
. (5)

According to equation (3), the expectation of the (log-) pricing kernel, 1
j
ED
t m

{j}
t , is the

negative of the ex-ante real return of the j-period bond, so the expectational term premium,

TP
D{j}
t , can then be intrepreted as a misalignment between the average of expected in�ation,

1
j

(∑j
k=1E

D
t πt+k

)
, and the average of (expected) in�ation embedded in the short-term policy
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rate expectations,

1

j

(
j−1∑
k=0

ED
t R

{1}
t+k + ED

t m
{j}
t

)
,

over the lifetime of the bond (i.e. the di�erence between the average of policy rate expecta-

tions and the expected real return, −1
j
ED
t m

{j}
t ).

Assuming a standard additive-separable power utility function in consumption and leisure,

the marginal utility of consumption is

UC,t = (Ct)
−σ ,

where σ denotes the constant relative risk aversion parameter. This implies that the log of

the pricing kernel is given by

m
{j}
t = log

(
M
{j}
t

)
= log

(
βj
UC,t+j
UC,t

)
= jlog (β)− σ (logCt+j − logCt) .

Substituting this expression in (5) gives

TP
D,{j}
t =

1

j

(
j∑

k=1

ED
t πt+k

)
−

[
1

j

(
j−1∑
k=0

ED
t R

{1}
t+k

)
− σED

t (logCt+j − logCt)
j

+ log (β)

]
, (6)

where
EAt (logCt+j−logCt)

j
captures the expected average of the growth rate of consumption over

the life of the bond.

Figure 1 shows evidence on the decoupling of average survey-based measures of in-

�ation expectations reported in the SPF and those in�ation expectations embedded in

the average survey-based measures of the short-term interest rate expectations also re-

ported in the SPF. More precisely, the upper graph in this �gure summarizes this decou-

pling by showing the SPF 1-year expectational term premium, TP
SPF,{4}
t , de�ned as 4 ×{

1
4

(∑4
k=1 π

SPF
t+k

)
−
[

1
4

(∑3
k=0R

{1},SPF
t+k

)
− σ[logCt+4−logCt]SPF

4
+ 100× log (β)

]}
(black line), 11

11To keep the same units across the four components of this expectational term premium, I �rst compute
in�ation and the short-term nominal rate in quarterized units, given that the SPF reports them in annualized
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where the SPF in�ation expectations accumulated over 1 year are given by
∑4

k=1 π
SPF
t+k (blue

line), and πSPFt,t+k denotes the k-period-ahead expectations for the in�ation rate reported in

the SPF; R
{1},SPF
t,t+k denotes the k-period-ahead expectations for the one-quarter nominal in-

terest rate reported in the SPF, so
∑3

k=0R
{1},SPF
t+k (grey line) denotes the SPF short-term

nominal rate expectations accumulated over 1 year; [logCt+4−logCt]SPF
4

is the expected average

consumption growth rate over the 1-year forecast horizon reported in the SPF; σ = 1.5 and

β = 0.9982.12 Thus,
[(∑3

k=0R
{1},SPF
t+k

)
− σ [logCt+4 − logCt]SPF + 400× log (β)

]
denotes

the in�ation expectations path embedded in the short-term policy rate expectations over

the 1-year forecast horizon (red line), and σ [logCt+4 − logCt]SPF − 400× log (β) denotes the

corresponding 1-year ex-ante real interest rate (green line). Notice that while SPF in�ation

expectations (blue line) remain stable in the second half of the sample period, the in�a-

tion expectations path embedded in the short-term policy rate SPF expectations (red line)

shows a clear downtrend for the whole sample period, which clearly suggests the presence of

a strong misalignment of expectations in recent times. Moreover, the SPF 1-year expecta-

tional term premium, identifying misaligned expectations (i.e. the wedge between the blue

and red lines), increases substantially around the last three recessions. Put di�erently, the

preliminary evidence found using SPF data supports the idea that misaligned expectations

increase substantially in recessions. Interestingly, all these recessions feature high levels of

the real interest rate relative to policy rate expectations, but the Great Recession and its

aftermath are associated with a larger, longer rise in the expectational term premium than

the other recessions.

units. Second, log(β) is multiplied by 100 because in�ation, nominal interest rates, and consumption growth
rates are reported in percentage units in the SPF. Finally, the whole expression for the expectational term
premium and its components shown in the graph is multiplied by 4 so that it is all measured in annualized
units.

12These two parameter values are fairly standard and close to the estimated values reported by Smets and
Wouters (2007) and Slobodyan and Wouters (2012) assuming either RE or AL.
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Figure 1. Decoupling of in�ation expectations based on the SPF and the Gibson paradox.

Notes: All dynamic moments are computed using a 20-year rolling window. Rolling variables are measured in quarterized

units.

All variables in the upper graph in Figure 1 show sizable short-run �uctuations which

somewhat hide their low-frequency dynamics. In order to improve visualization of the latter,

the bottom graph in Figure 1 shows, in quarterized units,13 (i) the dynamic mean of the

in�ation expectations path embedded in the short-term policy rate expectations over the

13In contrast to the upper graph, where annualized units are used, the bottom graph uses quarterized units
because they are similar in size to the dynamic correlations also plotted here.
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1-year forecast horizon, 1
4

∑3
k=0

(
R
{1},SPF
t,t+k

)
− σ[logCt+4−logCt]SPF

4
+ 100× log (β) (red line); (ii)

the dynamic mean of SPF in�ation expectations, 1
4

∑4
k=1 π

SPF
t,t+k, (blue line); (iii) the dynamic

correlation between the 1-year yield and in�ation (black line); (iv) the dynamic mean of the

ex-ante real interest rate implied by the four-quarter-ahead SPF forecasts for consumption

growth,
σ(logCt+j−logCt)SPF

j
− 100 × log (β) , (green line); and (v) the dynamic unconditional

covariance between the implied ex-ante real interest rate and in�ation using SPF forecasts

for consumption growth and in�ation (grey line). These dynamic moments are computed

using a 20-year rolling-window (i.e. 80 quarterly observations), but the patterns of dynamic

moments remain robust if, for instance, a 5-year rolling window is used. The horizontal axis

in the bottom graph indicates the �rst quarter of the corresponding rolling window. The �rst

three dynamic moments show a clear downtrend pattern in the bottom graph. In particular,

from the early 1990s onwards all windows show a low dynamic correlation between in�ation

and the 1-year yield, showing evidence of the Gibson paradox at the short end of the yield

curve in recent times. This �nding is also aligned with the low correlation between in�a-

tion and the short-term interest rate as revealed in Cogley, Sargent, and Surico (2012) and

Casares and Vázquez (2018). As discussed above, the Gibson paradox seems to be related

to a disconnection between the in�ation expectations of professional forecasters and those

embedded in the short-term rate SPF forecasts as shown by the divergent paths of in�a-

tion expectations and those embedded in the short-term rate expectations. In contrast, the

relative stability of the dynamic mean associated with the four-quarter-ahead consumption

growth SPF forecasts across the rolling windows suggests that the implied dynamic mean

of the ex-ante real interest rate across windows is relatively stable, which in turn suggests

that the stronger downtrend in in�ation expectations embedded in the short-term policy

rate expectations is mainly driven by a downtrend in the short-term policy rate forecasts,

1
4

(∑3
k=0R

{1},SPF
t+k

)
, which is especially pronounced during the 2001-2004 and 2007-2009 peri-

ods.14 Furthermore, the stability around zero of the dynamic covariance between the implied

14At this point, it must be clari�ed that the implied ex-ante real interest rate obtained from SPF data
is not constant at all, as shown in the upper graph in Figure 1. What it is shown in the bottom graph is

16



1-year real interest rate and the 1-year-ahead expectations of in�ation obtained from SPF

forecasts provides some degree of support for the zero-covariance constraint imposed by the

log-linearized model considered above.15

This section shows an illustration of misaligned interest rate expectations at the short-end

of the yield curve using a simple consumption-based asset pricing model and SPF data. The

following section considers a full-�edged DSGE model of the term structure, where model

uncertainty is introduced by assuming AL with discretional beliefs. This model results in a 10-

year expectational term premium capturing misaligned expectations and model uncertainty.

It turns out that uncertainty, characterized here by the 10-year expectational term premium,

increases greatly in recessions, as asserted by Bloom (2014).

4 A DSGE model of the term structure with adaptive

learning

The model estimated builds on the Smets and Wouters (2007) model and its AL extension

studied by Slobodyan and Wouters (2012a). This standard medium-scale estimated DSGE

model contains both nominal and real frictions that a�ect the choices of households and

�rms. I follow Aguilar and Vázquez (2021) and Vázquez and Aguilar (2021) by extending the

medium-scale DSGE model to account for the term structure of interest rates, but in contrast

to their papers the long term rates here are determined by the corresponding consumption-

based Euler equation instead of the EHTS. Moreover, I deviate from the monetary policy rule

in the Smets and Wouters (2007) model by assuming that the monetary authorities follow

a Taylor-type rule and react to expected in�ation, output gap, output gap growth, and a

that the rolling-mean of the implied ex-ante real interest rate across windows, capturing its low-frequency
dynamics, does not show any clear trend.

15This unconditional covariance should be viewed as a simple proxy of the conditional covariance that
shows up in equation (2). While 4-quarter-horizon forecasts of both the log of stochastic discount factor,

m
{4}
t , and the log of compounded in�ation, log

[
1∏4

k=1(1+πt+k)

]
= − 1

4

(∑4
k=1 πt+k

)
, can be obtained from the

SPF, the conditional covariance of these two variables is neither reported in nor can be inferred from SPF
forecasts.
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term spread as de�ned below. My purpose is to characterize the central banker and private

agents as sharing a similar degree of uncertainty about the overall model economy, and about

in�ation in particular. As in Smets and Wouters (2007), the model contains seven structural

disturbances associated with technology, demand-side, monetary policy, and price and wage

markup shocks. I present the extensions of the Smets and Wouters (2007) model next. The

remaining log-linearized equations of the estimated model are presented in a supplementary

appendix.

4.1 The expectational term premium under AL

This section characterizes the expectational AL term premium introduced in Section 3 by

augmenting the Smets and Wouters (2007) model with the term structure of interest rates

and considering AL expectations with discretional beliefs. Thus, the consumption-based asset

pricing equation associated with each maturity is extended to consider habit formation and

labor in the description of preferences. More precisely, the standard consumption-based asset

pricing equation associated with each maturity is obtained from the �rst-order conditions that

characterize the optimal decisions of the representative consumer:

EAL
t

βjUC(Ct+j, C
A
t+j−1, Lt+j)

(
(1 +R

{j}
t )
)j

UC(Ct, CA
t−1, Lt)

∏j
k=1(1 + πt+k)

 = 1, for j = 1, 2, ..., n, (7)

where EAL
t stands for the AL conditional expectations operator with discretional beliefs (i.e.

this AL expectations operator does not satisfy the law of iterated expectations),16 Lt is

labor, and the lagged aggregate consumption element, CA
t−1, in the utility function captures

the possibility of external habit formation. The rest of the notation is standard and identical

to that used in equation (1).

Considering the multiplicative utility function assumed in the Smets and Wouters (2007)

16Here, we use the superscript AL, instead of D used above, to emphasize the use of a particular AL
expectations operator described below.
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model and further assuming a logarithmic utility function, the (linearized) consumption-

based asset pricing equations can be written as17

xt = EAL
t xt+j −

(
1− h̄

) [
jr

AL{j}
t −

j∑
k=1

EAL
t πt+k

]
, for j = 1, 2, ..., n, (8)

where the following notation is used: xt = ct − h̄ct−1, h̄ = h
γ
. h denotes the habit formation

parameter, and γ denotes the balanced-growth rate. Lower case variables denote the log-

deviation of consumption, ct, from its balanced-growth (steady-state) value or, alternatively,

the deviations of the nominal yields, r
AL{j}
t , and the rate of in�ation, πt, from their respective

steady-state values. Here, I also add the superscript �AL� to the nominal yield of the j-period

maturity bond to emphasize that this yield is obtained under AL with discretional beliefs

and abstracts from any Jensen's inequality terms capturing the standard interpretation of a

term premium as a compensation for risk.

The expectational AL term premium, tp
AL{j}
t , is de�ned as the wedge between the nom-

inal yield associated with the j-period maturity bond, r
AL{j}
t , consistent with the log-linear

approximation (8) of the consumption-based asset pricing model, (7), and the nominal yield

associated with the j-period maturity bond implied by the EHTS under AL with discretional

beliefs, 1
j

∑j−1
k=0E

AL
t r

{1}
t+k. Formally,

tp
AL{j}
t = r

AL{j}
t − 1

j

j−1∑
k=0

EAL
t r

{1}
t+k. (9)

As emphasized above, the expectational AL term premium, tp
AL{j}
t , only captures a potential

misalignment between in�ation expectations that shows up in the set of optimality conditions

(8) and the path of in�ation expectations implied by the EHTS, which are embedded in

short-term interest rate expectations, once consumption growth expectations are taken into

17A log-utility function on consumption simpli�es the estimation procedure because, among other issues,
it avoids having to deal with labor expectations. This greatly reduces the number of forecasting models to
be estimated under AL.
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account as discussed in the previous section. In contrast to the standard interpretation of the

term premium as a compensation for risk, the expectational AL term premium, tp
AL{j}
t , only

captures a potential misalignment of in�ation expectations and those in�ation expectations

embedded in the policy rate since the log-linear approximation (8) eliminates any Jensen's

inequality terms resulting in a standard interpretation of the term premium. In short, the

expectational term premium is entirely driven by misalignments in policy rate expectations

implied by model uncertainty. This approach enables me to identify empirically a term

premium determined by uncertainty rather than risk. This empirical strategy to distinguish

uncertainty from risk is useful in the present framework because the concept of uncertainty

is typically viewed as a broad one: A stand-in for a mixture of risk and uncertainty (Bloom,

2014).

As is clear in (8), consumers do not need to compute expectations for the short-term rate

(or the yield consistent with the EHTS) to obtain their optimal decisions. Hence, consumers

under AL with discretional beliefs are not necessarily aware of departures from the EHTS.18

In order to compute tp
AL{j}
t , I consider forecasting rules (discretional beliefs) for EAL

t r
{1}
t+k

similar to those used by agents to de�ne the expectations for the forward-looking variables of

the model (i.e. the combination of forecasting rules for each forecasting horizon only contains

the contemporaneous and �rst-lag values of the forward-looking variable and the term spread,

as discussed below in detail). I refer to tp
AL{j}
t henceforth as the expectational term premium

18To be clear, the set of linear equations (8) should be viewed as the simple log-linear approximations
of the set of (non-linear) optimality conditions (7) de�ned under AL with discretional beliefs used to bring
the model to the data in the estimation procedure below. This view circumvents an issue raised in the AL
literature. For instance, Eusepi and Preston (2018, footnote #10) argue that expected yields with multiple
assets under discretional subjective beliefs in a �rst-order approximation may not satisfy no-arbitrage because
such beliefs are inconsistent with bounded portfolio decisions. I argue that this issue is not important in this
paper for several reasons. First, a reasonable AL assumption is that agents are aware of their non-rational
beliefs (i.e. they know that they do not know the true model), so unbounded portfolio decisions cannot be
optimal because departures of long-term yields from those implied by the EHTS do not guarantee riskless
pro�ts because in�ation expectations embedded in short-term interest rate expectations are not necessarily
aligned with the in�ation expectations of agents, as suggested by the evidence discussed above. Second,
optimal decisions as described in (8) do not require the computation of short-term interest rate expectations,
so optimal agents under AL with discretional beliefs are not necessarily aware of departures from the EHTS.
Finally, interest should not center on a �rst-approximation per se but on nonlinear optimality condition (7)
under AL. That is, the �rst-order approximation of the optimality conditions must be then understood just
as an approximation used to bring the model to the data.
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to distinguish it from the total term premium, which adds an exogenous (measurement error)

term to tp
AL{j}
t associated with the j-period maturity yield, as also discussed below.

Long maturity term structure

The analysis of the term premium associated with the 10-year yield under the approach

followed in this paper requires the use of the consumption-Euler equation associated with

that yield. As implied by equation (8), the equation for the 10-year yield is given by

xt = EAL
t xt+40 −

(
1− h̄

) [
40× rAL{40}

t −
40∑
k=1

EAL
t πt+k

]
.

Considering a long term maturity yield such as the 10-year yield means characterizing the

expectations for consumption and in�ation up to a 40-quarter horizon, and the expectations

for the short term rate up to the 39-quarter horizon in order to compute the associated

10-year term premium, tp
AL{40}
t , as shown in equation (9). In the current setup a long

forecasting horizon dramatically increases the number of forecasting model parameters for

consumption, in�ation, and the short-term rate being estimated, potentially leading to a

curse of dimensionality problem.19 To deal with this issue, I assume the following simple

recursive structure for expectations on forecast horizons beyond the four-quarter horizon:


EAL
t ct+j = µcE

AL
t ct+j−1,

EAL
t πt+j = µπE

AL
t πt+j−1,

EAL
t rt+j−1 = µrE

AL
t rt+j−2,

(10)

for j > 4. This structure builds on forecasting rules (15) and (16) described below which,

among others, characterize EAL
t ct+4, E

AL
t πt+4, and E

AL
t rt+3. The parameters µc, µπ, and µr

are estimated jointly with the rest of the parameters of the model.

19That is, the number of learning coe�cients to be estimated, described below in equations (15) and (16),
increases much faster than the number of yields as longer-maturity bonds are considered.
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The law of iterated expectations

To show the importance of the property of the law of iterated expectations in identifying the

expectational term premium, let Ẽt de�ne an expectations operator who satis�es the law of

iterated expectations (i.e. Ẽt

(
Ẽt+hzt+j

)
= Ẽtzt+j, for any forward-looking variable zt and

j > h > 0). For an expectations operator of this type, the set of optimality conditions (8)

can be written as

xt = Ẽtxt+j −
(
1− h̄

) [
jr
{j}
t −

j∑
k=1

Ẽtπt+k

]
, for j = 1, 2, ..., n. (11)

In particular, for j = 1 equation (11) becomes20

xt = Ẽtxt+1 −
(
1− h̄

) [
r
{1}
t − Ẽtπt+1

]
.

Under the law of iterated expectations, this optimality condition can be iterated j-periods

forward to obtain:

xt = Ẽtxt+j −
(
1− h̄

) j∑
k=1

Ẽt

[
r
{1}
t+k−1 − πt+k

]
. (12)

A straightforward comparison of equations (11) and (12) gives the pure EHTS:

r
{j}
t =

1

j

j−1∑
k=0

Ẽtr
{1}
t+k,

which implies that the expectational term premium (9) vanishes when the law of iterated

expectations is satis�ed, since the in�ation expectations of agents and those implied by the

EHTS are identical (i.e. actual in�ation expectations and those embedded in the policy rate

expectations are perfectly aligned in this case).

20Notice that the superscript AL is removed from r
{j}
t in equation (8) when writing (11) to distinguish the

j-period nominal yield implied by AL with discretional beliefs, EALt , from that implied by (11), where the
law of iterated expectations is imposed,Ẽt.
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An alternative AL term premium

The characterization of the expectational AL term premium suggested in this paper di�ers

from the AL term premium considered in Vázquez and Aguilar (2021). In their paper,

they focus only on the 1-period (linearized) consumption-based asset pricing equation (i.e.

equation (8) for j = 1):

xt = EAL
t xt+1 −

(
1− h̄

) [
jr
{1}
t − EAL

t πt+1

]
, (13)

and assume that long term yields are determined, up to an exogenous term premium, by the

EHTS. Formally, their j-period maturity yield is de�ned as

r
{j}
t =

1

j

j−1∑
k=0

EAL
t r

{1}
t+k + ξ

{j}
t , (14)

where ξ
{j}
t denotes their term premium de�ned as the wedge between the observed yield and

the yield implied by the EHTS, r
AL−EH{j}
t . This can be interpreted as an exogenous measure

of �uctuations in the risk premium (De Graeve, Emiris, and Wouters, 2009).

The following three remarks clearly distinguish the approach suggested in this paper from

the one in Vázquez and Aguilar (2021). First, in Vázquez and Aguilar (2021) current con-

sumption is determined by the current 1-period real interest rate and the 1-period-ahead ex-

pected consumption (as shown in equation (13)), but here the set of asset pricing equations (8)

implies that current consumption (implicitly de�ned by the quasi consumption growth rate,

xt) depends on the expected path of the j-period real interest rates (i.e. r
{j}
t −

∑j
k=1 E

AL
t πt+k)

and the corresponding expected path of consumption (de�ned in EAL
t xt+j). Second, by impos-

ing the EHTS to determine long-term yields, Vázquez and Aguilar (2021) ignore the presence

of misaligned expectations when modeling the term premium under AL with discretional be-

liefs. Finally, the (endogenous) expectational AL term premium described in (9) should also

be distinguished from the exogenous AL term premium, ξ
{j}
t , studied in Vázquez and Aguilar
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(2021). As is standard in empirical applications of term structure models (e.g. De Graeve,

Emiris, and Wouters, 2009), Vázquez and Aguilar (2021) augment the EHTS with an ex-

ogenous term premium shock, as in (14), which is viewed as an exogenous convenience yield

term (see, among others, Krishnamurthy and Vissing-Jorgensen, 2012; Greenwood, Hanson,

and Stein, 2015; Del Negro, Giannone, Giannoni, and Tambalotti, 2017) related to the safety

and liquidity features of (US) government bonds relative to assets with the same payo�,

but without such singular properties. As an alternative to their exogenous term premium

speci�cation, this paper provides a characterization of an (endogenous) expectational term

premium under AL with discretional beliefs that does not impose the EHTS in determining

long-term yields.

4.2 Adaptive learning

This paper departs from the RE assumption by considering a type of behavioral AL which

places lack of knowledge about the economic environment at center stage in the characteri-

zation of the term premium. Under AL, agents do not know the structure of the economy,

so they face a �rst-order uncertainty. That is, RE agents are able to identify all sources of

uncertainty, but AL agents have to learn�in general�about how the economy behaves, and

in particular about the alternative sources of fundamental model uncertainty from the time

series that they observe when they are forming their expectations in an imperfect information

setup.

By considering small forecasting models (e.g. Adam (2005), Branch and Evans (2006), Slo-

bodyan and Wouters (2012a,b), Rychalovska, Slobodyan, and Wouters (2016), and Vázquez

and Aguilar (2021)), this paper deviates from the minimum state variable (MSV) AL ap-

proach followed by Eusepi and Preston (2011) and others (Orphanides and Williams, 2005;

Milani, 2007, 2008, 2011; Sinha, 2015, 2016), where agents' expectations are assumed to be

based on a (linear) function of the state variables of the model. In contrast, small forecasting

models assume that agents generate their expectations based on the information provided
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by endogenous variables, such as those appearing in the optimality conditions of a DSGE

model.21

Next, I provide a brief description of how AL expectation formation works.22 A DSGE

model can be represented in matrix form as follows:

A0

 Zt−1

wt−1

+ A1

 Zt

wt

+ A2E
AL
t Zt+j +B0εt = 0,

where Zt is the vector of endogenous variables at time t, EAL
t Zt+j contains multi-period-

ahead expectations (i.e. it includes longer-dated forecasts of consumption, in�ation, and the

short-term interest rate), and wt is a vector including seven exogenous shocks and the lagged

innovations, εt−1, of the price- and wage-markup shocks since they are modeled as ARMA(1,

1) processes.

Agents are assumed to use small forecasting models (i.e. their perceived law of motion

processes) de�ned as follows:

Zt+j = Xtβ
{j}
t−1 + ut+j, for j = 1, 2, ..., n,

where Zt is the vector containing the forward-looking variables of the model (i.e. Zt is

included in Zt), Xt is the matrix of regressors, β
{j}
t is the vector of updating parameters,

which includes an intercept, and ut is a vector of errors. Those errors are linear combinations

of the true model innovations. Therefore, the variance-covariance matrices, Σ = E[ut+ju
T
t+j],

are non-diagonal. Agents are further assumed to use simple econometric tools under AL. More

precisely, they use a linear least squares projection in which the parameters are updated to

21As argued in Aguilar and Vázquez (2021), small forecasting models can be thought of as a more appealing
approach to AL than MSV on several grounds. Small forecasting models are robust to alternative models
characterized by di�erent MSV sets. This is an important feature because one of the main motivations for
moving from the RE assumption to some sort of AL is that agents do not really know what the true model
is. Consequently, they are uncertain about the actual MSV set. Taking into account the limited information
scenario faced by agents in reality seems to be an important feature in estimating the term premium: That
premium is characterized by expectation misalignment, which is driven by model uncertainty and thus fully
abstracts from the standard view of a term premium as a compensation for risk as emphasized above.

22For a detailed explanation see Slobodyan and Wouters (2012a).
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form their expectations for each forward-looking variable: EAL
t Zt+j = Xtβ

{j}
t−1. The updating

parameter vector, βt, which results from stacking all the vectors β
{j}
t , is further assumed to

follow an autoregressive process where agents' beliefs are updated through a Kalman �lter

as described below. This expectation updating process is represented as in Slobodyan and

Wouters (2012a) by the equation βt − β̄ = F (βt−1 − β̄) + vt, where F is a diagonal matrix

with the learning parameter | ρ |≤ 1 on the main diagonal and vt are i.i.d. errors with

variance-covariance matrix V . This standard AL approach assumes that agents do not take

into account the fact that their belief coe�cients will be revised in the future�e.g. Sinha

(2016), and Eusepi and Preston (2011, 2018).23

Once the expectations of the forward-looking variables,EAL
t Zt+j, are computed they are

plugged into the matrix representation of the DSGE model to obtain a backward-looking

representation of the model as follows:

 Zt

wt

 = µt + Tt

 Zt−1

wt−1

+Rtεt,

where the time-varying matrices µt, Tt and Rt are nonlinear functions of structural parameters

(entering into matrices A0, A1, A2 and B0) together with the learning coe�cients, βt. This

representation of the model is called the actual law of motion.

The Kalman-�lter updating and transition equations for the belief coe�cients and their

corresponding covariance matrix are given by

βt|t = βt|t−1 +Rt|t−1Xt−1

[
Σ +XT

t−1R
−1
t|t−1Xt−1

]
−1
(
Zt −Xt−1βt|t−1

)
,

where (βt+1|t− β̄) = F (βt|t− β̄), βt|t−1 is the estimate of βt using the information up to time

t− 1 (but also considering the autoregressive process followed by βt), and Rt|t−1 is the mean

23This assumption can be rationalized by using an anticipated utility approach such as that put forward
in Kreps (1998) and Sargent (1999). Such an approach assumes that agents do not take into account future
updates of beliefs when making current decisions but are otherwise fully optimal. This is in contrast to
the Bayesian belief approach followed by Adam, Marcet, and Beutel (2017), which takes belief updates into
account.
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squared error associated with βt|t−1. Therefore, the updated learning vector βt|t is equal to

the previous one, βt|t−1, plus a correction term that depends on the previous forecast error,(
Zt − Xt−1βt|t−1

)
. The mean squared error, Rt|t, associated with this updated estimate is

given by

Rt|t = Rt|t−1 −Rt|t−1Xt−1

[
Σ +XT

t−1R
−1
t|t−1Xt−1

]
−1XT

t−1R
−1
t|t−1,

with Rt+1|t = FRt|tF
T + V .

The initialization of this Kalman �lter for the belief coe�cients requires that β1|0 =

β, R1|0, Σ, and V be speci�ed. I follow Slobodyan and Wouters (2012a), where all these

expressions are derived from the correlations between the model variables implied by the RE

equilibrium computed at the corresponding structural parameter vector.

Forecasting models based on small information sets

I consider that agents combine two alternative forecasting models at the same time, track

their forecasting performance, and use a variant of the Bayesian model averaging method

to generate an aggregate forecast from the alternative forecasting models that is used to

characterize their decisions.24 In the �rst forecasting model I follow Slobodyan and Wouters

(2012a) by assuming a perceived law of motion (PLM) featuring a second-order autoregressive

process for each one-period-ahead conditional expectation that shows up in the DSGE model

analyzed. I also consider the contemporaneous and the �rst lag for the PLM that characterizes

the remaining j-period-ahead conditional AL expectations. Formally,

m1 : EAL
t Zt+j = θ

{j}
1,Z,t−1 + β

{j}
1,Z,t−1Zt + β

{j}
2,Z,t−1Zt−1. (15)

24More precisely, for each forecasting model mi the agents track the value of

Bi,t = t · log

(
det

(
1

t

t∑
i=1

uiu
T
i

))
+ κi · log(t),

where κi is the number of degrees of freedom in the forecasting model mi and ui is the i-th model forecasting
error. As pointed out in Slobodyan and Wouters (2008), this expression is a generalization of the sum of
squared errors adjusted for degrees of freedom using the Bayesian information criterion penalty. Thus, given
values of Bi,t, the weight of a model i at time t is proportional to exp

(
− 1

2Bi,t
)
.
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The second forecasting model follows Aguilar and Vázquez (2021) and Vázquez and

Aguilar (2021) by also considering the 1-year term spread��sp
{4}
t = r

{4}
t − rt. Formally,

m2 : EAL
t Zt+j = θ

{j}
2,Z,t−1 + γ

{j}
Z,t−1sp

{4}
t . (16)

A comparison of forecasting models (15) and (16) shows that the latter is simpler and

contains term spread information, which is observed in real time and thus entertains a realistic

feature in the learning process, while the former is well suited to characterizing expectations

in macroeconomic scenarios featuring large persistence. The use of the PLM (16) is further

motivated by the ability of term spreads to predict in�ation (Mishkin, 1990) and real economic

activity (Estrella and Hardouvelis, 1991, Estrella and Mishkin, 1997). It turns out that the

estimation results show that the forecasting model (16) fully characterizes the learning process

since 1988. This date roughly coincides with the end of the disin�ation process in the US

that started in the early 1980s, and the start of a period featuring low in�ation persistence

and the resurgence of the Gibson paradox as documented in Cogley, Sargent, and Surico

(2012) and Casares and Vázquez (2018). This fall in in�ation persistence may explain why

the forecasting model (15) plays no role in describing expectation dynamics since 1988 as

also discussed below.

In line with the PLM (15)-(16), discretional beliefs are considered. Thus, each expecta-

tional horizon is estimated separately, so they do not have to be consistent with each other.

As discussed above, this AL approach based on direct multi-step forecasting overcomes the

potential weakness of alternative AL models relying on iterated forecasts obtained from a

misspeci�ed forecasting model because misspeci�cation errors can be compounded with the

forecast horizon.25,26 Through the time-varying learning parameters, the AL approach intro-

25Preliminary estimation attempts show that the combination of the two alternative small forecasting
models helps to identify the learning parameter, ρ, in the approach based on the set of optimality conditions
followed in this paper.

26This multi-step forecasting approach to AL is in clear contrast to the maintained beliefs hypothesis
suggested in Preston (2005) (and also followed in Eusepi and Preston (2011) and Sinha (2015, 2016)), which
not only imposes an in�nite forecast horizon but also considers iterated forecasts used under the MSV
approach.
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duces some non-linear features that help somewhat to overcome the log-linear approximation

typically used in DSGE models. As emphasized in Aguilar and Vázquez (2021), this feature

improves model �t by capturing low frequency patterns in the data captured by the time-

varying intercepts, θ
{j}
i,Z,t−1, in equations (15) and (16). Moreover, the combination of di�erent

small forecasting models in the AL model adds �exibility, and somewhat resembles how SPF

panelists forecast, as discussed above.

PLM disciplined by the Survey of Professional Forecasters

Readers might wonder whether the AL approach considered here is too �exible in adding

degrees of freedom. To cope with this issue, and as a way of disciplining the expectations

for the short-term interest rate implied by the EHTS, which are crucial in de�ning the term

premium, I assume that the deviation over the current and the next three quarters in the

average of the short-term interest rate AL model expectations
(

1
4

∑3
k=0E

AL
t r

{1}
t+k

)
from their

observable counterparts reported in the SPF, denoted by ε
{4}
SPF,r,t, follows a �rst-autoregressive

process.27 Notice that the 1-year yield implied by the EHTS is given by 1
4

∑3
k=0E

AL
t r

{1}
t+k.

Therefore, using the observable counterpart of 1
4

∑3
k=0 r

{1},SPF
t+k in the SPF helps to discipline

the estimated 1-year expectational AL term premium.

Readers may also wonder why I only discipline the expectations of the short-term in-

terest rate. There are three main reasons: First, unlike expectations for other variables

(consumption and in�ation), short-term interest rate expectations do not fall within the set

of optimality conditions under AL with discretional beliefs as described by equation (8) and,

thus, they are not disciplined by model's dynamics. Therefore, it is important to discipline

27Several authors suggest that it may be appropriate to allow for the possibility of serial correlation in
noise to accommodate a realistic departure of market forecasts from survey forecasts. In particular, Kim and
Orphanides (2012) argue that survey forecasts only serve as a noisy source of information on expectations
since surveys may not always represent the expectations of market participants. Cohen, Hördahl, and Xia
(2018) argue that forecasters may compete for business or for in�uence through their calls. Moreover, surveys
are typically computed as equal-weighted averages of responses, whereas market yields are determined by the
expectations of the marginal investor (Li, Meldrum, and Rodriguez, 2017). Furthermore, a few participants
may have a huge impact on the market and they may have an informational advantage over professional
forecasters.
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those expectations critically de�ning the EHTS, and hence the expectational AL term pre-

mium with discretional beliefs in (9) with survey-based data on expectations. Second, as

shown in Vázquez and Aguilar (2021), the need to discipline AL expectations is greatly re-

duced by including term structure information in the forecasting models as I also do in this

paper, as discussed above. Finally, the inclusion of SPF forecasts to discipline consumption

and in�ation expectations would further increase the number of observables considered in

measurement equation (18) below, which is already large. In spite of these arguments, a

sensitivity analysis is carried out below by also including the average of the SPF in�ation

forecasts over the next four quarters, 1
4

∑4
k=1 π

SPF
t+k , in the set of observables in order to

discipline further the learning coe�cients featuring the AL forecasting model for in�ation

expectations. As shown below, the dynamics of the estimated AL term premium are not

altered when the set of observables is augmented with SPF in�ation forecasts.

4.3 A forward-looking policy rule

As in Slobodyan and Wouters (2012a), I deviate from the monetary policy rule in the Smets

and Wouters (2007) model by assuming that the monetary authorities follow a Taylor-type

rule, reacting to in�ation, output gap, and output gap growth, where the output gap is

de�ned as the deviation of output from its underlying neutral productivity process. The

monetary policy rule assumed in Slobodyan and Wouters (2012a) is also slightly modi�ed to

include (i) the 1-year term spread, sp
{4}
t = r

{4}
t − r{1}t , as in Vázquez and Aguilar (2021);28

and (ii) AL in�ation expectations instead of contemporaneous in�ation. This forward-looking

rule enables informational symmetry to be maintained between the private sector and the

central bank (i.e. the in�ation expectations of the two types of agent coincide). Formally,

28McCallum (1994) and Vázquez, María-Dolores, and Londoño (2013) are early papers that discuss the role
of term spreads as simple predictors of future macroeconomic conditions in the characterization of monetary
policy. This assumption is also in line with Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2018) who
augment the standard Taylor rule to include the excess return on a longer-term bond.

30



the policy rule is given by

r
{1}
t = ρrr

{1}
t−1 + (1− ρr)

[
rπE

AL
t πt+1 + ryŷt

]
+ r∆y∆ŷt + rspsp

{4}
t + εrt , (17)

where the output gap is de�ned as ŷt = yt − Φεat (i.e. as the deviation of output from its

underlying neutral productivity process) and the policy shock, εrt , is assumed to follow an

AR(1) process with a persistence parameter denoted by ρR, as in the Smets and Wouters

(2007) model.

5 Estimation results

This section starts with a description of the data and the estimation approach, then goes on

to discuss the model �t and estimation results.

5.1 Data and estimation approach

The AL-DSGE model with multiple asset price equations suggested here and the AL model

in Vázquez and Aguilar (2021) (henceforth, VA-AL speci�cation) are estimated using US

quarterly data for 1983:2-2017:3. The set of observable variables is identical to the one

considered by Slobodyan and Wouters (2012a) (i.e. the quarterly series of the in�ation

rate, the federal funds rate, the log of hours worked, and the quarterly log di�erences of

real consumption, real investment, real wages and real GDP) with the addition of the 1-

and 10-year, zero-coupon Treasury yields and the average of the SPF (nowcast) forecasts

of the three-month TB rate from 0- to 3-quarter horizons. GDP, consumption, investment,

and hours worked are measured in per-working age population terms. The sample period

includes the Great Recession, so I consider the shadow rate suggested by Wu and Xia (2016)

to deal with the zero-lower-bound issue that a�ects it. The shadow rate is the same as the

federal funds rate when the zero-lower-bound is not binding, but it is negative to account for

unconventional policy tools implemented when the federal funds rate is close to the zero lower
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bound (roughly from 2009:1 to 2015:4). Recent papers (e.g. Wu and Zhang, 2019; Mouabbi

and Sahuc, 2019; and Aguirre and Vázquez, 2020) use the shadow rate as a replacement for

the federal funds rate in New-Keynesian frameworks.

The set of measurement equations is



dlGDPt

dlCONSt

dlINVt

dlWAGt

dlPt

lHourst
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1− year TB yieldt
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r
{4},SPF
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4
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AL
t r

{1}
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AL{4}
t + ε

{4}
r,t

1
40

∑39
k=0E

AL
t r

{1}
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t + ε

{40}
r,t

1
4

∑3
k=0 E

AL
t r

{1}
t+k + ε

{4},SPF
r,t



, (18)

where l and dl denote the log and the log di�erence, respectively. γ = 100(γ − 1) is the

common quarterly trend growth rate for real GDP, real consumption, real investment, and

real wages. These are the variables that feature a long-run trend. l̄, π and r are the steady-

state levels of hours worked, in�ation, and the short-term interest rate. The superscripts

SPF and {4} in the last row of the measurement equation denote actual average forecasts

from the SPF and the corresponding forecast horizon, respectively. Hence, the measure-

ment equation involves 10 observable variables and three measurement errors, ε
{4}
r,t , ε

{40}
r,t , and

ε
{4},SPF
r,t associated with the 1-year and 10-year yields, and the average of the SPF forecasts

of the short-term nominal rate over the current and next three quarters, respectively.29 I

allow for persistence in the measurement errors associated with the 1-year and 10-year yields

29Together with the seven structural shocks, the inclusion of these three measurement errors implies that
the sum of structural shocks and measurement errors is (at least) equal to the number of observables used in
the estimation procedure, which overcomes the stochastic singularity that would otherwise show up, making
estimation impossible.
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(ε
{4}
r,t and ε

{40}
r,t , respectively). Importantly, these measurement errors capture any other com-

ponents determining the actual yields, such as the component of the term premium typically

viewed as the additional return for the risk associated with a long-term bond, which is to-

tally ignored when (linearized) consumption-based asset pricing equations (8) are considered.

According to the penultimate equation of (18), the total 10-year AL term premium (i.e. the

wedge between the 10-year yield and the 10-yield implied by the EHTS, r+ 1
40

∑39
k=0 E

AL
t r

{1}
t+k)

is thus de�ned as the sum of two elements: (i) The expectational AL term premium, tp
AL{40}
t ;

and (ii) the measurement error, ε
{40}
r,t .30 In a sensitivity analysis reported below, the mea-

surement equation (18) is augmented by also including the average of the SPF forecasts of

in�ation over the next four quarters in order to assess the robustness of the estimated expec-

tational term premium measure. Below, I also assess the robustness of the expectational AL

term premium by extending the sample period to the last quarter of 2019.

The estimation uses the Bayesian estimation procedure commonly used in the related

DSGE literature. First, the log posterior function is maximized by combining prior informa-

tion on the parameters with the likelihood of the data. The prior assumptions are exactly

the same as in Slobodyan and Wouters (2012a). Moreover, I consider rather loose priors for

the parameters that characterize both bond term premium dynamics and the measurement

errors considered. The second step implements the Metropolis-Hastings algorithm, which

runs a long sequence of a million draws of all the possible realizations for each parameter to

obtain its posterior distribution.

As stated above, in addition to the calibrated parameters considered in Slobodyan and

Wouters (2012a), I set the relative risk aversion parameter to one (that is, a log-utility func-

tion on consumption is assumed). This restriction is imposed for several reasons. First, it

avoids having to deal with hours-worked expectations, which reduces the number of fore-

30I do not further decompose the expectational AL term premium into real and in�ation term premium
components in this paper. Such a decomposition would require real term structure data to be considered
in addition to the large number of observed variables already used in the paper. Moreover, the use of real
term structure data is somewhat problematic because real zero-coupon yields can be obtained only from
1999 onwards. Hördahl and Tristani (2014) overcome this problem by considering real yields as unobservable
variables before 1999 in the estimation procedure of their macroeconometric-term-structure model.
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casting models to be estimated. Second, it imposes a parameter value for the relative risk

aversion that is much closer to a standard parameterization of the utility function which,

in addition, mutes the possibility of the expectational term premium picking up any com-

ponent of the term premium consistent with the standard view of a compensation for the

risk associated with long-term bonds since a very large value of the risk aversion parameter

is needed to generate this type of standard term premium� see e.g. Rudebusch and Swan-

son (2008, 2012); and Van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramírez

(2012)� with high-order approximations of the non-linear consumption-based asset pricing

equation as discussed above.

5.2 Model �t

A comparison of the (log) marginal likelihood values associated with the AL model with

multiple asset price equations suggested here and the VA-AL speci�cation suggested in

Vázquez and Aguilar (2021) results in a substantial improvement in model �t of [−371.03−

(−445.73) =] 74.70 log-points in favor of the former, as shown in the bottom line of Table 1

below.

Figure 2 shows the plots for the observable variables used in the estimation procedure

(solid blue line) together with the 1-quarter-ahead forecasts associated with the baseline AL

model suggested in this paper (dotted red line) and the VA-AL speci�cation (dashed green

line). In both cases the AL model �ts the macroeconomic time series, the 1-year and 10-year

zero-coupon yields, and the short-term rate SPF forecasts reasonably well. In particular, the

root mean squared error (RMSE) statistics based on in-sample forecasts, shown in each graph

of Figure 2 for the two models, indicate that the �t is very good for all the nominal variables

used in the estimation procedure. The baseline speci�cation also greatly improves the �t

of investment and real wage growth rates, while the VA-AL speci�cation does a better job

in �tting consumption growth. Furthermore, the RMSE-statistics for the two speci�cations

are also in line for the alternative variables with those reported in Slobodyan and Wouters
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(2012a), who estimate a similar AL-DSGE model but do not consider the term structure

block of the model (or term structure information in the forecasting models) considered in

the baseline and the VA-AL speci�cations.

A supplementary appendix analyzes the performance of the baseline- and VA-AL spec-

i�cations in reproducing selected second-moment statistics obtained from actual data. The

stochastic simulation of the two model speci�cations shows that they both provide reasonable

characterizations of the macroeconomy and the variables that describe the term structure

of interest rates (i.e. the 1-year and 10-year yields and the 1-year yield implied by the

EH of the term structure based on the SPF expectations for the short-term interest rate,

r
SPF{4}
t ). These features mean that the two AL speci�cations studied are appropriate tools

for analyzing the properties of the term premiums associated with them.

The estimation results also show that the weight associated with each of the two fore-

casting models is 0.5 for around the �rst �ve years of the sample (roughly until 1988), while

forecasting model (16) (based only on term spread information) fully characterizes the ex-

pectations of forward-looking variables for the rest of the sample. This �nding highlights

the major importance of term structure information in characterizing learning dynamics.

Moreover, the fall in in�ation persistence reported in Cogley, Sargent and Surico (2012) and

Casares and Vázquez (2018) may explain why the forecasting model (15), which is prone to

capture persistent dynamics, plays no role in describing expectation dynamics after 1988.

35



Figure 2. Historical and one-quarter-ahead forecast time series yields.

Note: Each graph shows the RMSE-statistics for the baseline AL model and the VA-AL speci�cation (in parenthesis).

36



5.3 Posterior estimates

Table 1 shows the estimation results for a selected group of parameters featuring both en-

dogenous and exogenous persistence for the baseline- and VA-AL models. The estimate of the

learning parameter ρ (around 0.94) is similar for the two speci�cations.31 These estimates of

the learning parameter are also similar to those reported in Slobodyan and Wouters (2012a)

and Vázquez and Aguilar (2021) using the data up to the end of the Great Moderation

period.

An analysis of the di�erences in posterior estimates obtained from the two speci�cations

reveals that (i) habit formation is much lower in the baseline-AL speci�cation than in the

VA-AL one (0.26 versus 0.71), but the opposite occurs for the capital utilization adjusting

cost parameter (0.75 versus 0.03); (ii) Calvo wage probability is also much lower for the

baseline model (0.24 versus 0.59); (iii) the moving-average coe�cients of markup shocks are

lower in the baseline model, especially for markup wage shocks; and (iv) regarding policy

rule parameters, the baseline AL model results in higher persistence and higher interest rate

responses to both in�ation and output gap than the VA-AL model, while the term spread

coe�cient, rsp, takes a similar value for the two speci�cations and is in line with those

reported in Aguilar and Vázquez (2021) and Vázquez and Aguilar (2021) under AL, thus

showing a robust response of the policy rate to the 1-year term spread.

31A supplementary appendix shows the full set of parameter estimates for the two speci�cations.
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Table 1. Selected parameter estimates (Sample period: 1983:2-2017:3)

Parameters associated with real rigidities Parameters associated with markups

habit formation (h) 0.26/0.71 mark-up price AR coef. (ρp) 0.98/0.95

(0.23,0.29) (0.96,0.99)

cost of adjusting capital (ϕ) 2.61/2.65 mark-up wage AR coef. (ρw ) 0.96/0.96

(2.33,2.79) (0.94,0.98)

capital utilization adjusting cost (ψ) 0.75/0.03 mark-up price MA coef. (µp) 0.47/0.58

(0.69,0.81) (0.41,0.52)

Parameters associated with nominal rigidities mark-up wage MA coef. (µw 0.17/0.50

Calvo price probability (ξp) 0.66/0.63 (0.11,0.21)

(0.61,0.71) Policy rule parameters

Calvo wage probability (ξw) 0.24/0.59 inertia (ρr) 0.97/0.86

(0.21,0.27) (0.96,0.98)

price indexation (ιp) 0.17/0.14 in�ation (rπ) 1.56/1.37

(0.11,0.23) (1.45,1.64)

wage indexation (ιw) 0.51/0.48 output gap (ry) 0.16/0.00

(0.45,0.58) (0.13,0.20)

Learning parameter (ρ) 0.93/0.95 output gap growth (r∆y) 0.03/0.01

(0.92,0.94) (0.02,0.03)

log data density -371.03/-445.73 term spread (rsp ) 0.18/0.17

(0.15,0.21)

Note: Each cell shows the posterior parameters estimates for the baseline- and VA-AL speci�cations, respectively. Parameter

notation and credible sets for the baseline speci�cation are in parentheses. The credible sets for the VA-AL speci�cation are

available in the supplementary appendix.
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6 AL term premium features

This section analyzes the AL term premium features associated with the 10-year yield. To

that end, I compare the annualized estimated AL term premiums with those estimated from

the no-arbitrage a�ne models of Kim and Wright (2005) and Adrian, Crump and Moench

(2013). Figure 3 shows the estimated term premiums associated with the 10-year bond yield

from the expectational AL model suggested in this paper (black line) together with the �ve-

factor no-arbitrage a�ne model of Adrian, Crump and Moench (2013) (blue line) (henceforth

called the ACM term premium), and the three-factor arbitrage-free term structure model

estimated by Kim and Wright (2005) (purple line) (henceforth called the KW) for the sample

period 1990:3-2017:3.32 In order to assess the robustness of the results, Figure 3 also plots the

10-year bond yield from the expectational AL model when the average of the SPF forecasts of

in�ation over the next four quarters is included in the set of observables. Several conclusions

can be drawn from this �gure. First, the two expectational AL term premium measures have

very similar patterns. The two expectational AL term premiums are sizable and show wide

�uctuations as the alternative measures. Second, there are major (and persistent) departures

(around 200 basis points or even higher) between alternative measures of the term premium.

Importantly, a strong comovement between the expectational AL measures and the ACM

term premiums is observed since 2001. Thus, large increases can be seen in the expectational

term premium measures and the (�ve latent factors) ACM measure after the 2001 and 2007-

2008 crisis, which contrast with the mild increase in the (three latent factor) KW measure.

This �nding suggests that the two additional latent factors considered in the estimation of the

ACM measure might well be associated with the increasing uncertainty generated by these

recessions, which is well captured by the estimated expectational AL term premium. This

�nding is also aligned with the idea that �... uncertainty rises in recessions�, as postulated by

Bloom (2014). Finally, the rapid fall of the expectational term premium since 2011 suggests

32Notice that the �rst observation (1990:3) in this comparison analysis of alternative term premiums is
di�erent from the �rst observation in the estimated sample period (1983:2). This is because the KW term
premium time series is available only from 1990:3 onwards.
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that the expectation misalignment resulting from uncertainty captured by this term premium

measure has been losing importance since the end of the Great Recession.

Figure 3. Annualized 10-year term premiums.

Notes: The two annualized expectational AL 10-year term premium measures reported in this �gure are computed as

4× tpAL{40}
t .

Figure 4 illustrates the robustness of the expectational AL term premium to an extension

of the estimation sample to the last quarter of 2019, excluding the Covid-19 pandemic period

and its aftermath. For this extended sample, the estimated expectational AL moves a little

closer to the ACM term premium since 2001 than for the shorter sample period.
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Figure 4. Annualized 10-year term premiums for an extended sample.

Notes: The expectational AL 10-year term premium is obtained by estimating the model for the extended period 1983:2-

2019:4.

Table 2 goes beyond the visual presentation provided by Figures 3-4 and shows statis-

tics (standard deviation, �rst-order autocorrelation, and contemporaneous cross-correlations)

that point to further similarities and di�erences between the alternative term premiums com-

puted for the sample period 1990:3-2017:3. In addition to the term premiums displayed in

Figure 3, this table also considers three other AL term premium measures: (i) The esti-

mated exogenous measure of the 10-year AL term premium obtained with the baseline set

of observables and computed as 4× ε{40}
r,t ; (ii) a total measure of the 10-year term premium,

which adds this exogenous measure to the baseline expectational AL measure; and (iii) the

exogenous 10-year term premium based on the AL model of Vázquez and Aguilar (2021).

The standard deviations of the total and expectational term premiums associated with the

AL-DSGE model suggested here can be seen to be higher than the standard deviations of

the other term premiums except for that of the exogenous AL term premium. Moreover, the

�rst-order correlation statistic indicates that AL induces a highly persistent expectational AL

term premium much in line with those obtained from no-arbitrage a�ne models (ACM and

KW). Table 2 also shows the correlations of alternative measures of term premiums with the

cyclical component of GDP (HP-GDP) computed with the HP �lter (Hodrick and Prescott,
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1997). Clearly, all term premiums are (mildly) countercyclical, in line with much of the

relevant theoretical and empirical literature (e.g. Campbell and Cochrane, 1999; Cochrane

and Piazzesi, 2005) as emphasized by Bauer, Rudebusch, and Wu, 2014; among others).

Table 2. 10-year term premium second moments (1990:3-2017:3)

Total AL Expect. AL Expect. AL Exo. AL VA ACM KW

(baseline) (baseline) (SPF in�ation) (baseline)

Std. dev. 1.20 1.26 1.32 1.70 1.18 1.01 0.90

1st-order autoc. 0.92 0.97 0.98 0.97 0.94 0.95 0.96

Cross-correlations (1990:3-2017:3)

Expect. AL (baseline) 0.05 1

Expect. AL (with SPF in�ation) � 0.99 1

Exo. AL (baseline) 0.70 -0.71 � 1

VA 0.52 -0.37 -0.42 0.64 1

ACM 0.71 0.23 0.14 0.33 0.69 1

KW 0.55 -0.18 -0.23 0.52 0.94 0.83 1

HP-GDP -0.45 -0.17 -0.10 -0.20 -0.19 -0.51 -0.26

Cross-correlations (2001:1-2017:3)

Expect. AL (baseline) 0.32 1

Expect. AL (with SPF in�ation) � 0.98 1

Exo. AL (baseline) 0.59 -0.58 � 1

VA 0.17 0.38 0.40 -0.18 1

ACM 0.49 0.82 0.80 -0.28 0.52 1

KW 0.20 0.71 0.74 -0.43 0.85 0.80 1

HP-GDP -0.48 -0.30 -0.23 -0.15 -0.06 -0.56 -0.29

Notes: We do not show the cross-correlations of the expectational term premium estimated including the SPF average

in�ation in the set of observables with the estimates of the total and the exogenous term premium measures obtained in the

baseline estimation that excludes SPF average in�ation from the set of observables.
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To bring to light di�erences and similarities across term premiums, Table 2 also shows the

correlations between the six term premiums for the period 1990:3-2017:3 and for the most

recent subsample 2001:1-2017:3. For the whole period (1990:3-2017:3), a low correlation

(0.23) can be observed between the baseline expectational AL term premium and the ACM

term premium. Meanwhile, the exogenous AL term premium captured by the estimated

measurement error associated with the 10-year yield shows a moderate correlation (0.52)

with the KW term premium, lower than that (0.83) of the two term premiums obtained

from a�ne models (ACM and KW). Moreover, the exogenous measure of the 10-year AL

term premium is more closely correlated with the other three measures of the term premium

(VA, ACM, KW) than the expectational AL one, suggesting that model uncertainty brought

about by the latter might not seem important when the whole sample period is considered.

These correlations are in clear contrast with those obtained for the period 2001:1-2017:3,

which includes the 2001 recession and the Great Recession. In this recent 17-year period,

the correlations of the expectational term premium with the two a�ne term premiums are

much higher. This is particularly true for the ACM term premium, with a high correlation

at 0.82, while the correlation between the expectational AL and KW is lower at 0.71. In

contrast, the exogenous measure of the 10-year AL term premium shows negative correlations

with the ACM and KW measures (as well as with the VA and the expectational AL ones),

indicating that it has performed poorly in recent times.33 These results suggest that the

misalignment of expectations between in�ation and the policy interest rate captured by the

expectational AL term premium with discretional beliefs has been especially substantial lately

and that the ACM is able to capture such misaligned expectations somewhat better than

the KW model. These �ndings challenge the view that term premium measures estimated

from reduced-form (a�ne) models are only driven by risk as assumed in RE frameworks. In

particular, misalignments in policy rate expectations due to a sort of bounded rationality

33As discussed above, this exogenous measurement error might be capable of capturing the component of
the term premium de�ned as the additional return for the in�ation and consumption risks associated with
a long-term bond. Recall that this risk term premium component is totally ignored when the expectational
term premium is characterized by considering the (linearized) consumption-based asset pricing equations (8).
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(and uncertainty) also seem to be an important driving force behind the dynamics of term

premium measures obtained from a�ne models in recent times.

This insight is explored further in Figure 5, which shows the dynamic correlation between

in�ation and the 10-year yield (black line) together with the dynamic means of (i) the 10-

year expectational AL term premium (grey line); (ii) the estimated 10-year expected in�ation

path implied by the EHTS (red line),34 computed as

[
1
40

(∑39
k=0 E

AL
t r

{1}
t+k

)
− [EALt xt+40−xt]

40
(

1−ˆ̄h
)

]
,

where ˆ̄h is the implied value of h̄ = h
γ
de�ned above, which is obtained from the estimated

posterior means of h and γ; and (iii) the estimated 10-year expected in�ation path (blue line)

computed as 1
40

(∑40
k=1E

AL
t πt+k

)
. These three time series are estimated as by-products of

the baseline AL speci�cation suggested here. These dynamic moments are computed using a

20-year rolling window. The horizontal axis indicates the �rst quarter of the corresponding

rolling window. Since the early 1990s all windows have shown low dynamic correlation

between in�ation and the 10-year yield, evidencing that the Gibson paradox shown in recent

literature for short-term interest rates (Casares and Vázquez, 2018) is carried over from the

short end to the long end of the yield curve. As discussed above, the Gibson paradox seems

to result in a disconnection between in�ation and the policy rate and that disconnection is

extended to some degree to the whole yield curve. The disconnection is likely to further

result in a decoupling between the 10-year in�ation expectation path and the 10-year path

of in�ation expectations embedded in the expectations of the future policy rate as shown by

their divergent paths in Figure 5. These divergent paths have resulted in a sizable estimated

10-year expectational AL term premium in recent times. Notice also that these divergent

paths of in�ation expectations are rather similar to those shown in Figure 1, which were

obtained using SPF (short-term) forecasts.

The question of how monetary policy featuring forward guidance may a�ect the expecta-

tional term premium may be raised. Forward guidance may certainly reduce the decoupling

between in�ation expectations of agents and the in�ation expectations embedded in their

34That is, the 10-year expected in�ation embedded at the policy rate expectations over the next 10 years.
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policy rate expectations, but the evidence from the expectations reported in the SPF (as

shown in Figure 1) and those implied by the AL-DSGE with discretional beliefs (Figure

5) casts doubt on the success of forward guidance on this front, especially during recession

episodes surrounded by economic uncertainty signaled by expectational premium spikes.

Figure 5. Expectational term premium and the Gibson paradox

Notes: The dynamic means and the correlation between in�ation and the 10-year yield are computed using a 20-year

rolling window. The dynamic mean of the expectational AL 10-year term premium is computed as 1
40

(∑40
k=1 E

AL
t πt+k

)
−[

1
40

(∑39
k=0 E

AL
t r

{1}
t+k

)
− [EALt xt+40−xt]

40
(
1−ˆ̄h

)
]
. The dynamic mean of the AL 10-year expected in�ation is computed as 1

40

(∑40
k=1 E

AL
t πt+k

)
.

The dynamic mean of the 10-year EHTS expected in�ation is computed as

[
1
40

(∑39
k=0 E

AL
t r

{1}
t+k

)
− [EALt xt+40−xt]

40
(
1−ˆ̄h

)
]
. Variables

are measured in quarterized units.

Term premium variance decomposition

Table 3 shows the variance decomposition of relevant observable variables used in the estima-

tion procedure and the expectational AL term premium. Each cell in this table reports two

�gures: First, the contribution to the forecast error variance for the 1-year forecast horizon of

the corresponding variable; and second, the unconditional variance decomposition. The low

level of persistence of the variables measured in growth rates implies that the variance decom-
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positions at the short- and long-term horizons are fairly similar. However, the di�erences in

variance decomposition across forecast horizons are much greater for the remaining variables,

which are much more persistent, as shown in Figure 2 above. Focusing on the expectational

AL term premium, it can be seen that the main drivers of its short-term �uctuations are

monetary policy shocks (67.3%) and wage markup shocks (22.7%), while the contributions

of other shocks are much smaller (e.g. the contribution the investment shock is 3.7%). The

relative contributions of shocks change quite dramatically when the unconditional variance

decomposition is analyzed. Thus, investment technology shocks explain 85.1% of the long-

term �uctuations in the expectational AL term premium while the contributions of monetary

and wage markup shocks drop substantially to 6.8% and 4.5%, respectively.

Table 3. Variance decomposition

∆y ∆c ∆inv ∆w l π r rAL{4} rAL{40} tpAL{40}

Shocks

Productivity 10.9/10.5 0.6/0.6 0.0/0.0 0.3/0.3 29.3/12.1 0.9/0.2 1.2/3.2 1.6/3.49 0.1/0.1 2.1/0.5

Risk premium 24.8/26.9 83.6/82.0 0.8/1.0 3.8/4.0 27.5/8.8 13.4/10.4 0.1/4.8 0.3/3.8 2.0/1.5 1.9/0.2

Exog. spending 52.1/50.3 0.6/0.5 0.0/0.0 0.3/0.3 31.0/56.5 0.1/0.1 1.3/21.2 1.8/21.8 0.1/0.6 2.0/2.9

Investment 10.5/10.2 2.0/4.0 99.1/98.9 9.5/9.6 5.4/16.0 0.6/39.1 0.8/2.3 2.1/10.0 0.4/70.2 3.7/85.1

Monet. policy 0.0/0.0 0.1/0.2 0.0/0.0 1.1/1.1 0.1/0.1 3.1/1.8 96.2/67.8 75.3/54.7 15.1/8.5 67.3/6.8

Price mark-up 0.0/0.0 0.1/0.1 0.0/0.0 1.2/1.2 0.0/0.0 79.3/46.4 0.0/0.0 0.0/0.0 0.0/0.0 0.3/0.0

Wage mark-up 1.8/2.0 13.1/12.5 0.1/0.2 83.9/83.5 6.7/6.5 2.9/2.1 0.4/0.7 4.9/4.1 0.2/0.1 22.7/4.5

1-yr yield 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 14.0/2.3 0.0/0.0 0.0/0.0

10-yr yield 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 82.2/19.0 0.0/0.0

Notes: Each cell reports the contributions to the forecast error variance of the corresponding variable for the 1-year forecast

horizon and the unconditional variance decomposition, respectively.
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7 Conclusions

This paper provides an alternative explanation of the bond term premium based on a DSGE

model featuring adaptive learning (AL) with discretional beliefs. In this AL framework,

agents do not know the structure of the economy, so they face an important source of un-

certainty: They do not know what the true model is or what the alternative sources of

fundamental uncertainty are, and they have to learn how the economy behaves from the time

series that they observe.

Following previous work by Aguilar and Vázquez (2021) and Vázquez and Aguilar (2021),

this paper extends the AL model of Slobodyan and Wouters (2012a) by introducing the term

structure of interest rates. But, in contrast to those papers, an endogenous expectational

term premium is obtained under AL where discretional beliefs result in departures from the

expectations hypothesis of the term structure. The term premium is usually viewed as a

compensation for risk associated with investment in long-term bonds, but the expectational

term premium suggested here is the result of model uncertainty, resulting in a misalignment

between the in�ation expectations held by agents and those which are embedded in short-term

interest (policy rate) expectations. The estimated expectational AL term premium shares

signi�cant features with those estimated recently from no-arbitrage a�ne term structure

models (e.g. Adrian, Crump and Moench, 2013) when misaligned expectations are sizable,

and hence casts doubt on the e�ectiveness of forward guidance in monetary policy during

recent recessions.

More generally, this paper contributes to an important research agenda: Including term

structure in the DSGE framework. Ultimately, there is a need to �nd a macro-�nance model

that captures macro data, the term premium, expectations, and also uncertainty. Having

such a workhorse model is especially important during quantitative easing, when monetary

policy is an active market participant in markets with long-term maturities and risky assets.
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Supplementary appendix (Not intended for publication)

Part 1

The estimated DSGE model under AL is given by

• using the de�nition of the expectational term premium (9), the optimality condition (8) for

j = 1, 4, 40 can be written as:

xt = EALt xt+j −
(
1− h̄

) [
jr
AL−EH{j}
t −

j∑
k=1

EALt πt+k + j
(
tp
{j}
t

)]
,

where r
AL−EH{j}
t = 1

j

∑j−1
k=0E

AL
t r

{1}
t+k, E

AL
t denotes the AL operator under discretional beliefs,

and tp
{1}
t = εbt is a risk premium structural shock, as in equation (2) of Smets and Wouters (2007),

representing a wedge between the interest rate controlled by the central bank and the return on

1-period assets held by the households.

• the policy rule (17)

r
{1}
t = ρrr

{1}
t−1 + (1− ρr)

[
rπE

AL
t πt+1 + ryŷt

]
+ r∆y∆ŷt + rspsp

{4}
t + εrt ,

• and the set of the remaining log-linearized dynamic equations in Slobodyan and Wouters

(2012a):

� Aggregate resource constraint:

yt = cyct + iyit + zyzt + εgt , (19)

where cy = C
Y = 1 − gy − iy, iy = I

Y = (γ − 1 + δ) KY , and zy = rk KY are steady-

state ratios. As in Smets and Wouters (2007), the depreciation rate and the exogenous

spending-GDP ratio are �xed in the estimation procedure at δ = 0.025 and gy = 0.18.

� Investment equation:

it = i1it−1 + (1− i1)EALt it+1 + i2qt + εit, (20)
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where i1 = 1
1+β

, and i2 = 1

(1+β)γ2ϕ
with β = βγ(1−σc).

� Arbitrage condition (value of capital, qt):

qt = q1E
AL
t qt+1 + (1− q1)EALt rkt+1 −

(
r
{1}
t − EALt πt+1

)
+ c−1

3 εbt , (21)

where q1 = βγ−1(1− δ) = (1−δ)
(rk+1−δ)

.

� Log-linearized aggregate production function:

yt = Φ (αkst + (1− α)lt + εat ) , (22)

where Φ = 1 + φ
Y = 1 + Steady-state �xed cost

Y and α is the capital-share in the production

function.35

� E�ective capital (with one period time-to-build):

kst = kt−1 + zt. (23)

� Capital utilization:

zt = z1r
k
t , (24)

where z1 = 1−ψ
ψ .

� Capital accumulation equation:

kt = k1kt−1 + (1− k1)it + k2ε
i
t, (25)

where k1 = 1−δ
γ and k2 =

(
1− 1−δ

γ

) (
1 + β

)
γ2ϕ.

� Marginal cost:

mct = (1− α)wt + αrkt − εat . (26)

35From the zero pro�t condition in steady-state, it should be noticed that φp also represents the
value of the steady-state price mark-up.
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� New-Keynesian Phillips curve (price in�ation dynamics):

πt = π1πt−1 + π2E
AL
t πt+1 − π3mct + π4ε

p
t , (27)

where π1 =
ιp

1+βιp
, π2 = β

1+βιp
, π3 = A

1+βιp

[
(1−βξp)(1−ξp)

ξp

]
, and π4 =

1+βιp
1+βιp

. The

coe�cient of the curvature of the Kimball goods market aggregator, included in the

de�nition of A, is �xed in the estimation procedure at εp = 10 as in Smets and Wouters

(2007).

� Optimal demand for capital by �rms:

− (kst − lt) + wt = rkt . (28)

� Wage markup equation:

µwt = wt −mrst = wt −
(
σllt + 1

1−h/γ (ct − (h/γ) ct−1)
)
. (29)

� Real wage dynamic equation:

wt = w1wt−1 + (1− w1)
(
EALt wt+1 + EALt πt+1

)
− w2πt + w3πt−1 − w4µ

w
t + εwt . (30)

where w1 = 1
1+β

, w2 = 1+βιw
1+β

, w3 = ιw
1+β

, w4 = 1
1+β

[
(1−βξw)(1−ξw)

ξw((φw−1)εw+1)

]
with the curvature

of the Kimball labor aggregator �xed at εw = 10.0 and a steady-state wage mark-up

�xed at φw = 1.5 as in Smets and Wouters (2007)
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Part 2

This part of the supplementary appendix analyzes the performance of the baseline- and the

VA-AL speci�cations in reproducing selected second-moment statistics obtained from actual

data as shown in Table A.1. More precisely, the simulated data is generated by carrying

out a stochastic simulation of the model using the mean of the posterior distribution of each

estimated parameter. I carry out 5,000 stochastic simulations of equal size of the sample

period in order to compute the mean and the 90% simulated credible set of each simulated

statistic. I focus on �ve types of moment: standard deviations, �rst-order autocorrelations,

and the correlations of the alternative variables with output growth, in�ation, and the short-

term (policy) interest rate, respectively.

For standard deviations, the two estimated AL models are able to match the volatility of

all variables reasonably well, at least qualitatively. For �rst-order autocorrelation, the two

AL speci�cations reproduce the low/moderate persistence of the growth rates of most real

variables rather well. It also does a good job in reproducing the high persistence of hours

worked and the nominal variables. For correlations with output growth, the AL models

capture the moderate/high correlation between consumption and output growth rates and

the low correlation of output growth with hours worked and to some extent with in�ation.

For the rest of the variables, the estimated correlation with output growth is in general lower

than the actual correlation. The model does also a good job in characterizing the correlations

of the alternative variables with both in�ation and the short-term interest rate. These results

are rather similar for the two AL speci�cations.
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Table A.1. Actual and simulated second moments (1983:2-2017:3)

∆y ∆c ∆inv ∆w l π r r{4} rEH{4} r{40}

Actual data

Std. dev. 0.62∗ 0.60∗ 1.88+ 0.86+ 4.08+ 0.25 0.87∗+ 0.76∗+ 0.77+ 0.67∗

Autocor. 0.41+ 0.37∗+ 0.67 -0.19 0.99 0.61 0.99∗+ 0.99 0.99 0.99

Cor.(∆y) 1.0 0.70∗+ 0.69 -0.02∗ 0.15∗+ 0.14+ 0.28+ 0.35 0.37 0.37

Cor.(π) 0.14+ 0.09∗+ 0.11∗+ -0.14 0.29∗+ 1.0 0.54∗+ 0.56∗+ 0.56∗+ 0.54∗+

Cor.(r) 0.28+ 0.30+ 0.04∗+ 0.11∗+ 0.71 0.54∗+ 1.0 0.98∗ 0.97 0.90

Simulated data

Std. dev. 0.64/0.78 0.65/0.77 1.44/1.77 1.11/0.88 1.88/2.81 0.75/0.56 0.63/0.67 0.61/0.60 0.39/0.57 0.44/0.43

(0.57,0.70) (0.58,0.72) (1.27,1.63) (1.00,1.23) (1.21,2.78) (0.48,1.14) (0.39,0.95) (0.38,0.90) (0.25,0.58) (0.26,0.69)

Autocor. 0.14/0.33 0.23/0.53 0.46/0.55 0.19/0.02 0.94/0.97 0.93/0.89 0.98/0.97 0.96/0.94 0.95/0.94 0.95/0.95

(0.00,0.28) (0.08,0.38) (0.34,0.58) (0.05,0.33) (0.88,0.98) (0.85,0.97) (0.95,0.99) (0.92,0.98) (0.90,0.98) (0.89,0.98)

Cor.(∆y) 1.0 0.69/0.78 0.28/0.27 0.03/0.15 0.11/0.09 -0.03/0.02 -0.04/0.12 -0.05/-0.02 -0.01/0.01 -0.02/0.06

� (0.61,0.76) (0.14,0.41) (-0.11,0.17) (-0.01,0.23) (-0.16,0.10) (-0.18,0.10) (-0.19,0.09) (-0.15,0.13) (-0.15,0.11)

Cor.(π) -0.03/0.02 0.00/0.02 -0.09/0.10 -0.05/0.05 0.18/0.06 1.0 0.21/0.71 0.09/0.75 0.37/0.69 0.32/0.45

(-0.16,0.10) (-0.12,0.12) (-0.29,0.11) (-0.21,0.12) (-0.43,0.68) � (-0.39,0.71) (-0.49,0.63) (-0.15,0.78) (-0.29,0.77)

Cor.(r) -0.04/0.12 -0.04/0.17 -0.01/-0.04 0.01/0.03 0.18/0.07 0.21/0.71 1.0 0.94/0.80 0.84/0.68 0.42/0.44

(-0.18,0.10) (-0.18,0.11) (-0.22,0.21) (-0.15,0.18) (-0.39,0.67) (-0.39,0.71) � (0.86,0.98) (0.62,0.96) (-0.18,0.83)

Note: An asterisk (a cross) in the upper panel indicates that the actual second moment statistic lies within the estimated

credible set for the baseline (VA)-AL model. Each cell in the bottom panel shows the posterior estimates for the baseline- and the

VA-AL speci�cations, respectively. The bottom panel only shows the credible sets for the baseline speci�cation in parentheses.

The credible sets for the VA-AL speci�cation are available upon request.
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Table A.2.1: Priors and estimated posteriors of the structural parameters

Priors Posteriors

Baseline VA-AL

Log-likelihood -371.03 -445.73

Distr Mean Std D. Mean 5% 95% Mean 5% 95%

ϕ: cost of adjusting capital Normal 4.00 1.50 2.61 2.33 2.79 2.65 2.62 2.67

h: habit formation Beta 0.70 0.10 0.26 0.23 0.29 0.71 0.69 0.72

σl : Frisch elasticity Normal 2.00 0.50 2.49 2.40 2.62 1.86 1.85 1.87

ξp: price Calvo probability Beta 0.50 0.10 0.66 0.61 0.71 0.63 0.60 0.65

ξw : wage Calvo probability Beta 0.50 0.10 0.24 0.21 0.27 0.59 0.57 0.62

ιw : wage indexation Beta 0.50 0.15 0.52 0.45 0.58 0.48 0.36 0.60

ιp: price indexation Beta 0.50 0.15 0.17 0.11 0.23 0.14 0.10 0.18

ψ: capital utilization adjusting cost Beta 0.50 0.15 0.75 0.69 0.81 0.03 0.02 0.03

Φ : steady state price mark-up Normal 1.25 0.12 1.27 1.18 1.35 1.37 1.29 1.45

rπ : policy rule in�ation Normal 1.50 0.25 1.56 1.45 1.64 1.36 1.30 1.43

ρr : policy rule smoothing Beta 0.75 0.10 0.97 0.96 0.98 0.86 0.85 0.88

ry : policy rule output gap Beta 0.12 0.05 0.16 0.13 0.20 0.005 0.002 0.007

r∆y : policy rule output gap growth Beta 0.12 0.05 0.03 0.02 0.03 0.008 0.006 0.010

rsp: policy rule term spread Normal 0.12 0.05 0.18 0.15 0.21 0.17 0.15 0.19

π: steady-state in�ation Gamma 0.62 0.10 0.63 0.56 0.71 0.61 0.58 0.64

100(β−1 − 1): steady-state rate of disc. Gamma 0.25 0.10 0.32 0.28 0.36 0.26 0.21 0.31

rSPF : mean of SPF rate. Uniform 1.00 2.00 1.10 0.98 1.24 0.94 0.77 1.11

l: steady-state labor Normal 0.00 2.00 -0.62 -1.25 -0.12 -0.57 -0.77 -0.26

γ: one plus steady-state growth rate Normal 0.40 0.10 0.43 0.41 0.45 0.42 0.41 0.43

α: capital share Normal 0.30 0.05 0.12 0.10 0.14 0.11 0.10 0.13

µπ : expectations in�ation coef. Beta 0.90 0.15 0.71 0.66 0.78 � � �

µc: expectations consumption coef. Beta 0.90 0.15 0.99 0.95 1.0 � � �

µr : expectations policy rate coef. Beta 0.90 0.15 0.97 0.92 1.0 � � �

ρ: learning parameter Beta 0.50 0.29 0.93 0.92 0.94 0.949 0.943 0.954
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Table A.2.2: Priors and estimated posteriors of the structural shock process parameters

Priors Posteriors

Baseline VA-AL

Distr Mean Std D. Mean 5% 95% Mean 5% 95%

σa: Std. dev. productivity innov. Invgamma 0.10 2.00 0.44 0.40 0.48 0.45 0.42 0.48

σb: Std. dev. risk premium innov. Invgamma 0.10 2.00 0.60 0.54 0.67 0.26 0.25 0.28

σg : Std. dev. exogenous spending innov. Invgamma 0.10 2.00 0.39 0.36 0.42 0.38 0.34 0.41

σi: Std. dev. investment innov. Invgamma 0.10 2.00 1.36 1.29 1.43 1.11 1.08 1.15

σR: Std. dev. monetary policy innov. Invgamma 0.10 2.00 0.11 0.09 0.12 0.106 0.097 0.115

σp: Std. dev. price mark-up innov. Invgamma 0.10 2.00 0.23 0.21 0.25 0.19 0.18 0.21

σw : Std. dev. wage mark-up innov. Invgamma 0.10 2.00 1.61 1.54 1.69 0.94 0.88 0.99

σ
ε
{4}
r

: Std. dev. 1-yr TP innov. Uniform 2.00 2.00 0.35 0.32 0.39 0.11 0.10 0.12

σ
ε
{40}
r

: Std. dev. 10-yr TP innov. Uniform 2.00 2.00 0.41 0.37 0.45 0.11 0.09 0.12

σ
εSPF

: Std. dev. SPF mesmt. error Uniform 0.10 2.00 0.069 0.064 0.075 0.11 0.10 0.12

ρa: Autoreg. coef. product. shock Beta 0.50 0.20 0.96 0.94 0.98 0.98 0.96 0.99

ρb: Autoreg. coef. risk shock Beta 0.50 0.20 0.90 0.88 0.92 0.42 0.39 0.45

ρg : Autoreg. coef. exog. spen. shock Beta 0.50 0.20 0.988 0.980 0.995 0.97 0.95 0.99

ρi: Autoreg. coef. invest. shock Beta 0.50 0.20 0.97 0.96 0.98 0.95 0.94 0.96

ρR: Autoreg. coef. policy shock Beta 0.50 0.20 0.52 0.49 0.58 0.74 0.71 0.77

ρp: Autoreg. coef. price mkup shock Beta 0.50 0.20 0.98 0.96 0.99 0.95 0.94 0.97

ρw : Autoreg. coef. wage mkup shock Beta 0.50 0.20 0.96 0.94 0.98 0.957 0.950 0.965

µp: MA coef. price markup shock Beta 0.50 0.20 0.47 0.41 0.52 0.58 0.54 0.63

µw : MA coef. wage markup shock Beta 0.50 0.20 0.17 0.11 0.21 0.49 0.43 0.54

ρ{4}: Autoreg. coef. 1-yr TP Beta 0.50 0.20 0.76 0.73 0.78 0.95 0.94 0.96

ρ{40}: Autoreg. coef. 1-yr TP Beta 0.50 0.20 0.94 0.91 0.96 0.97 0.96 0.99

ρSPF : Autoreg. coef. SPF mesmt. error Beta 0.50 0.20 0.94 0.91 0.97 0.96 0.94 0.97

ρga: interact. product. and spend. shocks Beta 0.50 0.25 0.40 0.35 0.45 0.52 0.47 0.58
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