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ABSTRACT
This article proposes two distinct contributions to econometric analysis of large information sets and
structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility,
and exogenous predictors, as an equivalent high-dimensional static regression problem with thousands
of covariates. Inference in this specification proceeds using Bayesian hierarchical priors that shrink the
high-dimensional vector of coefficients either toward zero or time-invariance. Second, it introduces the
frameworks of factor graphs and message passing as a means of designing efficient Bayesian estimation
algorithms. In particular, a generalized approximate message passing algorithm is derived that has low
algorithmic complexity and is trivially parallelizable. The result is a comprehensive methodology that can be
used to estimate time-varying parameter regressions with arbitrarily large number of exogenous predictors.
In a forecasting exercise for U.S. price inflation this methodology is shown to work very well. Supplementary
materials for this article are available online.
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1. Introduction

As a response to the increasing linkages between the macro-
economy and the financial sector, as well as the expanding
interconnectedness of the global economy, empirical macro-
economic models have increased both in complexity and size.
For that reason, estimation of modern models that inform
macroeconomic decisions—such as linear and nonlinear
versions of dynamic stochastic general equilibrium (DSGE)
and vector autoregressive (VAR) models—many times relies
on Bayesian inference via powerful Markov chain Monte Carlo
(MCMC) methods.1 However, existing posterior simulation
algorithms cannot scale up to very high-dimensions due
to the computational inefficiency and the larger numerical
error associated with repeated sampling via Monte Carlo; see
Angelino, Johnson, and Adams (2016) for a thorough review of
such computational issues from a machine learning and high-
dimensional data perspective. In that respect, while Bayesian
inference is a natural probabilistic framework for learning about
parameters by using all information in the data likelihood
and prior, computational restrictions might make it less
suitable for supporting real-time decision-making in very high
dimensions.

This article introduces to the econometric literature the
framework of factor graphs (Kschischang, Frey, and Loeliger
2001) for the purpose of designing computationally efficient,
and easy to maintain, Bayesian estimation algorithms. The focus
is not only on “faster” posterior inference broadly interpreted,
but on designing algorithms that have such low complexity

CONTACT Dimitris Korobilis dikorobilis@googlemail.com Adam Smith Business School, University of Glasgow, Glasgow G12 8QQ, UK.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/UBES.

1See Herbst and Schorfheide (2015) and Koop and Korobilis (2010) for detailed discussion of Bayesian computation in DSGE and VAR models, respectively.
2The most popular use of graphs in economics is to represent networks of agents, banks, social networks, etc.; see Jackson (2008).
3Message passing algorithms are dynamic programming methods designed for efficiently performing large computations by distributing calculations among

a number of simpler processors. Readers working with high-performance clusters (HPC) might be familiar with the related concept of message passing
interface (MPI) which is a standardized means for exchanging data/commands between multiple processors in a computer cluster.

that are future-proof and can be used in high-dimensional
econometric problems with possibly thousands or millions
of coefficients. While a graph, in general, is a structure that
allows the representation of objects that are related in some
sense,2 a factor graph representation of a high-dimensional
vector of model parameters, in particular, depicts how each
of its scalar elements is connected with each other based on
the functional form of their joint posterior distribution. As a
result, the factor graph representation provides a visual tool
for the decomposition of a high-dimensional joint posterior
distribution into smaller, tractable parts. By doing so, factor
graphs can be used to design parallel versions of MCMC
algorithms, as well as efficient iterative algorithms called message
passing algorithms—the latter being the concept of interest in
this article.3

Having the factor graph as the starting point, interest lies in
an estimation strategy called the sum-product algorithm which
is not well known in mainstream statistics, despite the fact that
it is computationally powerful (Wand 2017, pp. 137–138). The
sum-product algorithm is a general rule in factor graphs that
allows to iteratively approximate marginal (posterior) distribu-
tions. When applied to a parametric problem with arbitrary like-
lihood and prior functions, the so-called generalized approx-
imate message passing (GAMP) algorithm introduces further
Gaussian and quadratic approximations to the possibly com-
plicated expressions derived by the sum-product iterative algo-
rithm. Proposed by Rangan (2011), GAMP is an extension of
the popular approximate message passing (AMP) algorithm of
Donoho, Maleki, and Montanari (2009). The GAMP algorithm
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has desirable properties, namely, high-dimensional scalability,
parallelizability, and effortless maintenance. Therefore, the first
task of this article is to analyze the concept of message passing
algorithms in general; simplify the jargon stemming from sig-
nal processing, computing science, and similar literatures that
have introduced such algorithms; and show how GAMP, in
particular, can lead to efficient posterior inference in very high-
dimensions.

At the same time, a second important task is to provide
compelling evidence that the proposed algorithm is relevant
for modeling macroeconomic variables. For that reason, I uti-
lize a regression model setting with time-varying coefficients,
stochastic volatility, and exogenous predictors. Regression mod-
els featuring time-varying parameters (TVPs) have been pop-
ular in economics at least since the seminal work of Cooley
and Prescott (1976). More recently, there has been a systematic
effort to introduce efficient MCMC algorithms for flexible esti-
mation and shrinkage in Bayesian TVP models (see Koop and
Potter 2007; Stock and Watson 2007; Giordani and Kohn 2008;
Chan et al. 2012; Groen, Paap, and Ravazzollo 2013; Nakajima
and West 2013; Belmonte, Koop, and Korobilis 2014; Kalli and
Griffin 2014; Kowal, Matteson, and Ruppert 2019; Ročková and
McAlinn 2018, among others). These are examples of carefully
designed MCMC algorithms that result in flexible joint model-
ing of structural instabilities and parameter shrinkage, but that
may not be scalable to very high dimensions due to their reliance
on repeated sampling via Monte Carlo.

As a consequence, a novel empirical contribution introduced
in this article is to estimate a TVP regression model by using an
observationally equivalent high-dimensional static regression
form, and to address computational concerns by using message
passing inference. With T observations and p predictors, the
TVP model can be written as a static regression with the same T
observations but (T + 1)p covariates—where the product (T +
1)p can easily be in the order of tens of thousands in standard
macroeconomic applications. This static representation of the
TVP model is anything but new, however, its estimation in the
past has been exclusively tackled by specifying an additional
hierarchical random walk (or sometimes stationary autoregres-
sive) model for all TVPs. This hierarchical form allows for
inference using state-space methods and at the same time it
can be interpreted as an informative shrinkage prior that makes
estimation of this high-dimensional problem feasible. Instead
I propose to completely drop this “random-walk prior” and
the resulting state-space representation, and estimate the TVP
model as a high-dimensional static regression with the assis-
tance of a flexible Bayesian hierarchical shrinkage prior inspired
by Tipping (2001). That way, by casting the TVP regression
model into equivalent static form, standard shrinkage principles
can be used to determine by how much coefficients evolve over
time, or whether their value is zero and they are completely irrel-
evant. Most importantly, the use of the low-complexity GAMP
algorithm ensures that the static form of the TVP regression
with (T + 1)p covariates can be estimated quickly. The benefits
of this algorithm and modeling strategy are illustrated using
a forecasting exercise for monthly U.S. inflation that extends
Stock and Watson (1999) to the TVP setting. The static form
of the TVP regression estimated with GAMP is contrasted with
powerful but slow MCMC algorithms for TVP models, such as

Figure 1. Simple factor graph representation of the decomposition of joint func-
tion p (x1, x2, x3).

Chan et al. (2012) and Kalli and Griffin (2014). The proposed
approach, by incorporating a larger number of predictors and by
shrinking coefficients flexibly, does perform significantly better
compared to competitors in out-of-sample forecasting.

In the next section, I introduce the general framework of
factor graphs on random variables (parameters) and with the
help of a toy example I show how this framework allows for
efficient calculation of marginal distributions. Next, in Section 3,
I introduce the TVP regression setting, rewrite the likelihood in
static regression form and specify a shrinkage “sparse Bayesian
learning” (SBL) prior. Under the given functional forms for the
likelihood and prior, I proceed to derive a GAMP algorithm
for this particular problem. In Section 4, the benefits of the
proposed high-dimensional modeling approach are evaluated in
a forecasting exercise for U.S. price inflation. Section 5 concludes
the article.

2. Factor Graphs and the Sum-Product Algorithm

A factor graph represents the way a global function of several
variables can be decomposed into a product of simpler functions
(“factors”). Consider a generic example with discrete random
variables x = (x1, x2, x3) and a joint mass function p that we
can decompose, say, as

p (x1, x2, x3) = fa (x1) fb (x1, x2) fc (x2, x3) fd (x3) , (1)

where fa, fb, fc, fd are the factors that have known functional
forms.4 This simple example can be depicted using the factor
graph of Figure 1, where circles denote the place of random vari-
ables in the graph and filled boxes denote the factors/functions.5

Consider now calculation of the marginal distribution of xi.
This is a computationally demanding task due to the fact that it
involves integration (summation, in the discrete variable case)
over all variables other than xi

p (xi) =
∑
x\xi

p (x1, x2, x3) , (2)

where x\xi denotes the set x with the element xi removed. As an
example, if the variables in x have two states (e.g., they are binary
variables), then the above sum would only require 23 operations.
However, for high number of states and/or variables compu-
tational requirements proliferate substantially. Nevertheless, if

4In the next section, the discrete random variables x are replaced by con-
tinuous model parameters, and the factors/functions are conditional or
marginal probability distributions over these parameters.

5In graph theory, symbols like the boxes and the circles in this example are
called nodes or vertices. Nodes that depend to each other are connected
with a solid line, and each connected pair of nodes is called an “edge.”
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p(x1, x2, x3) is replaced with the expression in (1) it can be
seen that not each variable is coupled to every other one, and
this feature can be exploited to simplify the summation. For
example, in the case of variable x1, Figure 1 depicts that it is
directly connected to x2 and the factors fa(x1) and fd(x1, x2), but
it is only indirectly connected to x3 and the remaining factors.
Put differently, we can simplify (2) via identity (1) as follows

p (x1) =
∑

x2

∑
x3

fa (x1) fb (x1, x2) fc (x2, x3) fd (x3) , (3)

= fa (x1)
∑

x2

fb (x1, x2)
∑

x3

fc (x2, x3) fd (x3) . (4)

The second line of the equation above implies less algorithmic
operations compared to the expression in the first line.

It should be clear at this point that the role of the factor graph
representation is to allow to pin down the full path of influence
that each variable xi exerts on other variables. As a consequence,
by having this path of influence, only the required factors fj
can be used when calculating marginal distributions, which
increases computational efficiency. This is where the concept
of message passing formalizes such an efficient procedure for
computing marginals. Each variable node passes messages to the
next variable, where these messages are real-valued functions
showing the influence that this variable exerts on all other vari-
ables. In the remainder of this section, message passing infer-
ence is introduced and the sum-product algorithm is derived,
such that simplifications similar to the ones in Equations (3) and
(4) are formalized mathematically. Subsequently, in Section 3,
the results of this toy example with three discrete random vari-
ables (parameters) can be generalized to a high-dimensional
regression setting with possibly millions of parameters. More
detailed introductions to these concepts can be found in popular
machine learning textbooks, such as Barber (2012) and Bishop
(2006). A recent introduction of message passing inference in
factor graphs from a statistician’s perspective is provided in
Wand (2017).

Denote with μxi→fj the message sent from variable xi to
function fj, and with μfj→xi the message sent from factor node
fj to variable node xi, where i = 1, 2, 3 and j = a, b, c, d in
our simple example with three variables and four factors. The
message sent from variable xi to factor node fj is equal to the
product of all messages arriving to node xi except from the
message coming from the target node fj:

μxi→fj =
∏

k∈N(xi),k�=j
μfk→xi , (5)

where N(xi) is the set of neighboring (factor) nodes to xi.
Similarly, the message sent from factor node fj to variable node
xi is given by the sum over the product of the factor function fj
itself and all the incoming messages, except the messages from
the target variable node xi:

μfj→xi =
∑
x\xi

fj (x)
∏

l∈N(xi),l �=i
μxl→fj . (6)

Due to the form of the equation above, algorithms that are
designed to iterate between (5) and (6) are called sum-product
algorithms; see also respective equations for the regression
model in the next section.

In the special case where xi is an external node (as is the
case with x1 and x3 in this example) it holds that μxi→fj =
1. Similarly, if fj is an external factor node (see fa(x1) and
fd(x3) in Figure 1) it holds that μfj→xi = fj (xi). Equations
(5) and (6) define the iterations of the so-called sum-product
algorithm (also called belief propagation; see Pearl 1982), that
allows calculation of marginal distributions (also called “beliefs”
in computing science and the Bayesian networks literature).
Upon convergence, it can be shown6 that

p (xi) ∝
∏

m∈N(xi)

μfm→xi , (7)

that is, the marginal distribution of variable xi is simply the
product of all messages received only from factor nodes that are
connected to xi.

Consider for example calculation of p (x2). Starting from the
left of the graph, the messages emitted to node x2 are

μfa→x1 = fa (x1) , (8)
μx1→fb = μfa→x1 = fa (x1) , (9)

μfb→x2 =
∑

x1

fb (x1x2) μx1→fb , (10)

where the first identity holds because fa (x1) is an external factor
node, the second identity is a result of Equation (5), and the third
identity is a result of (6). Similarly, the messages that arrive to
x2 stating from the right of the graph are

μfd ,x3 = fd (x3) , (11)
μx3→fc = μfc→x3 = fd (x3) , (12)

μfc→x2 =
∑

x3

fc (x2, x3) μx3→fc , (13)

where again the first identity results from the fact that fd (x3, x4)
is an external factor node, the second results from Equation
(5) and the third from Equation (6). Therefore, the marginal
distribution of x2 is now

p (x2) ∝ μfb→x2 × μfc→x2 . (14)

Using similar arguments we can derive p (x1) and p (x3).
In this particular example, the formula derived in (14) might

seem redundant as for a wide class of distributions p (•), one can
simply calculate the marginal distribution of x2 using numerical
integration. However, in high dimensions with many random
variables, the sum-product rule can provide us with scalable
and parallel posterior inference algorithms that can be several
times faster compared to conventional algorithms that iterate
sequentially (e.g., Gibbs sampler). It can be shown that the
sum-product (belief propagation) algorithm is a special case of
the more general expectation propagation algorithms that have
been very popular in Bayesian machine learning; see Vehtari et
al. (2018). Finally, note at this point that there is no mention
about how to approximate the summations in (6), which will not
necessarily be tractable. Given the sum-product formula, there
are several algorithms that would allow for the approximation

6It is beyond the scope of this article to derive and prove the algorithm, and
the reader is referred to the excellent machine learning books of Barber
(2012) and Bishop (2006).
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of the required messages which are functions of the factors fj.
For example, Wand (2017) developed message passing inference
inspired by the variational Bayes method. In the next section,
I adopt a recently developed algorithm (GAMP) that performs
Normal approximations to the functions implied by the sum-
product iterations.

3. Econometric Methodology

3.1. Time-Varying Parameter Regression

The starting point is the following TVP regression with stochas-
tic volatility of the form

yt = xtβt + εt , (15)

subject to an initial condition for βt at t = 0 (denoted as
β0), where yt is the tth observation on the variable of interest,
t = 1, . . . , T, xt is a 1 × p vector of predictors (possibly
including lags of yt), βt is a p × 1 vector of coefficients, and
εt ∼ N

(
0, σ 2

t
)

with σ 2
t the time-varying variance parameter. It

is desirable to estimate the initial condition in this model, rather
than assume it is known. For that reason, following Frühwirth-
Schnatter and Wagner (2010), this model can be written using
an equivalent non-centered parameterization that allows to split
the parameter βt into a part that is constant (which is equivalent
to its initial condition β0), and an “add-on” time-varying part
with initial condition fixed to zero. The equivalent specification
is

yt = xtβ̃ + xtβ̃t + εt , (16)

where now β̃t has initial condition zero and it holds that βt =
β̃ + β̃t . As shown in Belmonte, Koop, and Korobilis (2014) this
parameterization allows to use shrinkage priors to determine
whether a variable has constant coefficient (by only shrinking
the time-varying part), or it is completely irrelevant for model-
ing y (by shrinking both the constant and time-varying parts to
zero). More details of this approach are provided in the online
appendix, Section D.1.

The TVP regression can be written in the following equiva-
lent static regression form

y = Xβ + ε, (17)

where y = [
y1, . . . , yT

]′ and ε = [ε1, . . . , εT]′ are column
vectors stacking the observations yt and εt respectively, β =[
β̃ ′, β̃ ′

1, . . . , β̃ ′
T
]′ is a (T + 1)p × 1 vector, and

X =

⎡⎢⎢⎢⎢⎢⎣
x1 x1 01×p . . . 01×p 01×p
x2 01×p x2 . . . 01×p 01×p
...

...
. . . . . . . . .

...
xT−1 01×p 01×p . . . xT−1 01×p

xT 01×p 01×p . . . 01×p xT

⎤⎥⎥⎥⎥⎥⎦ , (18)

is a T × (T + 1)p matrix. It is evident that the first p columns
of X specify a constant parameter regression and its remaining
columns add “time-dummies” to that regression. The Gram
matrix

(
X′X

)
is of rank T and the q = (T + 1)p, in total,

regression coefficients in (17) cannot be estimated with OLS.
For that reason, following a long-standing tradition in engi-
neering, economists tend to assume that βt (similarly for β̃t in

the non centered parameterization) typically follows a random
walk of the form βt = βt−1 + ηt , where ηt ∼ N (0, Q) for
some p × p symmetric, positive-definite covariance matrix Q.
This random walk regression for βt allows to write the full TVP
regression model in familiar state-space form, and also provides
the additional information needed to estimate βt using data
y and X. By doing so, estimation typically relies on MCMC
methods by means of a simulation smoother; see Primiceri
(2005) for a representative example. From a Bayesian point of
view this additional information can be viewed as a conditional
hierarchical prior of the form p (βt|βt−1) ∼ N (βt−1, Q) that
provides appropriate level of shrinkage. Put differently, Equation
(17) alone can be seen as an ill-posed problem where OLS does
not have a unique solution and regularization is imperative for
estimation.

In this article, I adopt this shrinkage view of the TVP regres-
sion model and propose an alternative inference strategy. That
is, inference is done without reference to the useful but rather
informative and subjective conditional hierarchical prior for βt
given βt−1 outlined above. Instead, the TVPs are recovered by
estimating directly Equation (17) using data-based hierarchical
shrinkage priors. In particular, I follow Tipping (2001) and
define the following independent hierarchical prior for each
element βi of the vector β , i = 1, 2, . . . , (T + 1)p,

p (βi|αi) = N
(
0, α−1

i
)

, (19)
p (αi) = Gamma

(
a, b

)
. (20)

This conditionally Normal prior for βi and Gamma prior for
the precision parameter αi is a scale mixture of Normal repre-
sentation of a Student’s-t prior. Tipping (2001) calls this heavy-
tailed prior a SBL prior, and I adopt this name henceforth;
see also Korobilis (2013) for a detailed explanation why such
hierarchical priors have good shrinkage properties. I follow Tip-
ping (2001) and present all empirical results using the uniform
hyperpriors (over a logarithmic scale) a = b = 1 × 10−10.

Two additional comments are in order regarding this TVP
regression. First, the number of columns of X is q = (T + 1)p,
therefore, the number of coefficients grows rapidly. For example,
with 700 monthly observations and only 100 predictors, we end
up with 70,100 regression coefficients. As a consequence, it is
imperative to choose a fast estimation algorithm that approxi-
mates the parameter posterior, and this is where the scalability
of message passing algorithms comes into play. Second, there
is no mention yet of inference on σ 2

t , as this issue is covered
later in this section after the GAMP inference algorithm is
outlined. In a nutshell, estimation of stochastic volatility σ 2

t also
follows the same shrinkage principles defined for βt . That is, it is
shown that we can write estimation of σ 2

t as a high-dimensional
regression problem, without having to assume any kind of first-
order Markov dependence to σ 2

t−1.

3.2. A Factor Graph Representation of Bayesian
Regression

At this point, we have all the necessary ingredients to cast the
static form of the TVP regression in Equation (17) into a factor
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graph form.7 Consider first an independent (but not necessarily
iid) prior for β , denoted p (β) = ∏q

i=1 p (βi), and the resulting
posterior from Bayes theorem

p
(
β|y) ∝ p

(
y|β)

p (β) , (21)

=
T∏

t=1
p
(
yt|β

) q∏
i=1

p (βi) . (22)

The exact marginal posterior of βi, i = 1, . . . , q is of the form

p
(
βi|y

) =
∫

p
(
β|y) dβj �=i, (23)

∝
∫

p
(
y|β)

p (β) dβj �=i, (24)

= p (βi)

∫
p
(
y|β) q∏

j=1,j �=i
p
(
βj

)
dβj �=i, (25)

where dβj �=i denotes integration over the whole set of q − 1
parameters βj for j �= i. Therefore, the formula above requires
integration over a (q − 1)-dimensional integral, a numerical
problem that can become computationally infeasible for a high-
dimensional vector β .

We can now call the framework of factor graphs to factor-
ize efficiently the marginal posteriors of β . The factor graph
representation of the regression model is depicted in Figure 2.
Based on this figure, the marginal posterior of βi, presented
in Equation (25), can be defined as the product of incoming
messages at node βi in the graph

p
(
βi|y

) = μp(βi)→βi

T∏
t=1

μp(yt |β)→βi . (26)

Similar to Equation (8) in the example of Section 2, the message
μp(βi)→βi is an external factor node and for that reason it is equal
to the prior p (βi). Generalizing the example sum-product rule
derived in Equations (5) and (6) of the previous section, we can
write the messages from p(yt|β) ∀t to βi using the following
expression

μp(yt |β)→βi =
∫

p
(
yt|β

) p∏
j=1,j �=i

μβj→p(yt |β)dβj �=i. (27)

In the decomposition above, the message from node βj to func-
tion (factor) p

(
yt|β

)
is the product of all incoming messages to

node βi, excluding the message coming from p
(
yt|β

)
itself

μβj→p(yt |β) = p
(
βj

) T∏
s=1,s �=t

μp(ys|β)→βj . (28)

We can see in Equations (27) and (28) that to obtain the
message μp(yt |β)→βi we need μβj→p(yt |β) and vice-versa. There-
fore, one can simply update both equations iteratively using the

7For the sake of brevity, notation for prior, posterior, and likelihood distribu-
tions is generic, that is, there is no reference to their exact functional forms.
Exact details and parametric formulas can be found in the online appendix,
Section B.

Figure 2. Factor graph representation for the high-dimensional regression model.

following iterative sum-product scheme

μ
(r+1)
p(yt |β)→βi

=
∫

p
(
yt|β

) q∏
j=1,j �=i

μ
(r)
βj→p(yt |β)dβj �=i, (29)

μ
(r+1)
βj→p(yt |β) = p

(
βj

) T∏
∫=1,∫ �=t

μ
(r)
p(y∫ |β)→βj

, (30)

where the superscript (r) denotes the rth iteration of the algo-
rithm. In graphs with a tree structure, one iteration of the algo-
rithm above will always recover the exact marginal posteriors for
the parameters βi. In a factor graph with loops there are no guar-
antees that the sum-product rule will converge to a good fixed
point. However, the sum-product rule can still achieve a good
approximation and this is the reason why it is used extensively
in applications of coding theory, machine vision, and compres-
sive sensing that have a loopy graph representation (Mooij and
Kappen 2007). Translating these facts into familiar jargon for
the static regression in Equation (17), algorithmic convergence
is achieved if the correlation of right-hand side predictors is
not excessively high. If this is not the case, the joint posterior
of the coefficients β might also be highly correlated, which
would make inference solely based on the marginal posteriors
p(βi) less accurate. In our benchmark TVP regression in (17),
correlation is by default not excessively high due to the fact that
the Gram matrixX′X has a certain block-diagonal structure that
allows for a general sparse correlation pattern—even if within
a given block correlation may be high. In the empirical appli-
cation, predictor variables are mainly principal components or
lags thereof, such that correlation within each block is also
low. Finally, note that the specific time-decomposition of the
likelihood function does not accommodate autoregressive and
general time-series models, where the likelihood at time t may
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be written conditional on past observations. In the empirical
application it is found that, despite this approximation, autore-
gressive coefficients are recovered accurately.8

3.3. Generalized Approximate Message Passing

While the core of any message passing algorithm is fully
described by the sum-product iterations, deriving the exact
functional form of the messages in Equations (29) and (30)
under the regression likelihood and the Student’s-t hierarchical
prior implies that cumbersome integrations might be necessary.
The GAMP algorithm introduces certain Gaussian approxima-
tions to the sum-product iterations. Unlike Laplace approxima-
tions, that is, Gaussian approximations to parameter posteriors
that many times can be poor, the GAMP approximation is
fully based on asymptotic results that make it more reliable as
the number of predictors grows large. First, when q → ∞
a central limit theorem (CLT) postulates that the messages∏q

j=1,j �=i μβj→p(yt |β) can be approximated by a Gaussian dis-
tribution with respect to the uniform norm.9 This result means
that messages in (27) can be represented to be proportional to a
Gaussian distribution. A second approximation involves taking
the Taylor-series expansion of terms in the messages, so that
the first two moments (mean and variance) of p

(
βi|y

)
can be

obtained analytically up to the omission of O
(
1/q

)
terms. Exact

derivation of these approximations involves many tedious steps
and transformations, and the reader is referred to the online
appendix for more details. What is important to stress at this
point is that both the CLT and Taylor-series approximations
vanish as q → ∞ with q/T → δ for some constant δ; see
Rangan (2011) and Rangan et al. (2016) for more details. This is
an example of the “blessing of Big Data”—rather than the “curse
of dimensionality” embedded in many traditional estimation
algorithms—as the GAMP algorithm fully facilitates the large q
asymptotics.

Deriving the GAMP algorithm involves several steps and
lengthy proofs which are left for the online appendix. The
final product of all the approximations to the two sum-product
update equations (29) and (30) is a simple iterative algorithm
that provides an approximation to the mean and variance
of p

(
βi|y

)
. The algorithm iterates through computationally

trivial scalar multiplications and additions that result in worst
case algorithmic complexity of O(Tq). That is, estimation
of the marginal parameter posterior distribution does not

8A simulation exercise in the online appendix, Section C.3, generating arti-
ficial data from an AR(4) model, also verifies that the proposed GAMP
algorithm performs well even if the likelihood function is not iid. Another
assumption that affects performance of GAMP is that X is mean-zero
Gaussian; see the discussion in Al-Shoukairi, Schniter, and Rao (2018) and
references therein. In a time series context this means that GAMP will have
better convergence when right hand-side predictors are strictly stationary,
although the use of weakly stationary predictors is not excluded.

9This is a result of the Berry–Esseen CLT which states that a sum of random
variables converge to a Gaussian density; see a proof of this theorem in
Donoho, Maleki, and Montanari (2011). Given that the sum-product equa-
tions involve products of random variables, rather than sums, derivations
of GAMP based on this CLT typically proceed by taking logarithms of
Equations (26) and (28). The marginal posterior p (βi|y) is then recovered
by performing an exponential transformation of the log messages, and
by normalizing so that the posterior integrates to one; see the online
appendix, Section A, for details.

Algorithm 1 Generalized approximate message passing
(GAMP) with known variance and prior hyperparameters

1: Initialize β̂
(0)
i = 0 and τ̂

β ,(0)
i = 100 ∀i = 1, . . . , q, and set

ŝ(0)
t = 0 ∀t = 1, . . . , T.

2: r = 1
3: while ‖β̂(r) − β̂(r−1)‖ → 0 do
4: 1) Output messages step:
5: for t = 1 to T do
6: ĉ(r)

t = ∑q
i=1 Xt,iβ̂

(r−1)
i − ŝ(r−1)

t τ̂
c,(r)
t

7: τ̂
c,(r)
t = ∑q

i=1 X
2
t,iτ̂

β ,(r−1)
i

8: ŝ(r)
t = gout

(̂
c(r)

t , τ̂ c,(r)
t , yt

)
9: τ̂

s,(r)
t = − ∂

∂̂c gout
(̂

c(r)
t , τ̂ c,(r)

t , yt
)

10: end for
11: 2) Input messages step:
12: for i = 1 to q do
13: d̂(r)

i = β̂
(r−1)
i + τ̂

d,(r)
i

∑T
t=1 Xt,îs(r)

t

14: τ̂
d,(r)
i =

(∑T
t=1 X

2
t,iτ̂

s,(r)
t

)−1

15: β̂
(r)
i = gin

(̂
d(r)

i , τ̂ d,(r)
i

)
16: τ̂

β ,(r)
i = τ̂

d,(r)
i

∂

∂ d̂
gin

(̂
d(r)

i , τ̂ d,(r)
i

)
17: end for
18: r = r + 1
19: end while
20: Obtain mean and variance of β as β̂ =

(
β̂

(r)
1 , . . . , β̂(r)

q
)

and

τβ =
(
τ̂

β ,(r)
1 , . . . , τ̂ β ,(r)

q
)

involve costly operations such as high-dimensional integration
or inversion of large matrices. This feature implies that the
algorithm can handle regressions with an excessively large
number of predictors with the same ease it can handle smaller
regression models. Convergence is achieved when the difference
between estimates of the posterior mean of β between two
consecutive iterations is below a prespecified tolerance level.
Other parameters can be updated by combining the GAMP
algorithm with EM updates.10 This feature is explained in
the online appendix, where it is shown how to update the
hyperparameter αi introduced in the hierarchical prior of
Equation (20).

A sketch of the algorithm is provided in Algorithm 1. This is
a simplified version that focuses on estimation of β by assum-
ing that the regression variance and prior hyperparameters are
all known and fixed. Following the analysis in Section 2, the
algorithm can be split into two steps: (i) evaluating all messages
that leave each variable node βj (output) and (ii) evaluating all
messages that arrive at each variable node βj (input). The final
product is estimates of the posterior mean and variance of βj

which are denoted as β̂i and τ̂
β
i , respectively. At the core of the

calculation of the posterior mean and variance are the scalar
functions gin and gout. Derivation of the exact form of these
two functions depends on the form of the prior distribution
and the likelihood. Online appendix, Section B, provides a

10See Al-Shoukairi, Schniter, and Rao (2018) and Zou et al. (2016) for examples
of how to derive EM updates for prior hyperparameters.
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detailed algorithm in the case of the regression likelihood in
Equation (17) and the prior in (19) and (20). In any case, Rangan
(2011) showed that regardless of the form of the nonlinear scalar
functions gin and gout, the worst-case complexity of the GAMP
algorithm is not affected and is always O(Tq).

The algorithm above assumes a known regression variance,
for example, normalized to be one. Of empirical interest is the
derivation of an update rule for the variance parameter when
this is both unknown and time varying. Here, I propose a novel,
computationally trivial estimator of the variance that builds
on approximations used in the Bayesian stochastic volatility
estimator of Kim et al. (1998). First, we write the regression
model in (17) in the following form

y = Xβ + 
v, (31)

where 
 is a T × T diagonal matrix with the time-varying
standard deviations σt on its main diagonal. Subsequently, con-
ditional on knowing β by means of some estimate β̂ , we can
rewrite the above model as

log
[(

y − Xβ̂
)2

]
= log

(
diag (
)2) + log(v2), ⇒ (32)

ỹ = σ̃ 2 + ṽ, (33)

where diag (
)2 is a T × 1 vector with elements σ 2
t ∀t ∈

[1, T], and variables with a •̃ denote quantities in log-squares.
In particular, the distribution of ṽ is log −χ2 with one degree
of freedom. Following Kim et al. (1998), we can approximate
this with a mixture of seven Normal distributions with means
μi, variances Vi and component weights πi, where i = 1, . . . , 7
and

∑
i πi = 1.11 Then Equation (33) can be replaced with the

following set of seven equations

ỹ = σ̃ 2 + ui, i = 1, . . . , 7, (34)

where ui ∼ N (μi, Vi). An estimator of the T × 1 vector of log-
volatilities is of the form Ei

(
σ̃ 2) = ỹ−μi, and the final volatility

estimate at time t is

σ̂ 2
t = exp

( 7∑
i=1

πi
(̃
yt − μi

)
/7

)
. (35)

Similar expressions can also be derived for the posterior vari-
ance of σ 2

t if desired, for example, when computing the posterior
predictive density via simulation. It turns out that the resulting
estimate of volatility is similar to the standard stochastic volatil-
ity estimator of Kim et al. (1998), but it is much less persistent
due to the lack of dependence of σ 2

t on σ 2
t−1. More evidence

on the excellent properties of this simple estimator of stochastic
volatility is provided in the online appendix, Section D.1.

Finally, online appendix, Section C, provides detailed Monte
Carlo evidence on the usefulness of the proposed econometric
specification and algorithm. By simulating artificial data from
models with various patterns of time-variation in parameters,
it is assessed how good the specification in Equation (17), with
the assistance of the SBL prior, is at recovering the true TVPs.
At the same time, a second simulation exercise shows the ability
of the GAMP algorithm with shrinkage prior to perform high-
dimensional shrinkage even in cases with more predictors than

11The exact values of μi , Vi , πi for all seven components is provided in the
online appendix, Section B.

observations. A final simulation exercise discusses the stability
of the GAMP algorithm in models with correlated predictors,
and assesses numerically the case where the likelihood function
is not iid. While the results of the simulated data exercises
suggest that the proposed algorithm provides a reasonable bal-
ance between computational speed and estimation accuracy, the
next section establishes that the proposed algorithm is also very
useful in a forecasting application using real macroeconomic
data.

4. Empirical Illustration: Forecasting Inflation

This section describes the setup and results of a comprehensive
forecasting exercise that demonstrates the merits of the mod-
eling approach outlined in the previous section. Most appli-
cations of TVP regressions focus in particular on inflation.
Of course, this class of models is flexible enough to provide
useful forecasts of any other variable of interest; see Bauwens
et al. (2015) for assessing structural breaks in several monthly
and quarterly macroeconomic time series. Nevertheless, there is
ample evidence that structural breaks in inflation are so evident
and complex, such that TVP models are particularly useful
for forecasting this variable (see Chan et al. 2012; Koop and
Korobilis 2012; Groen, Paap, and Ravazzollo 2013; Pettenuzzo
and Timmermann 2017; Stock and Watson 2007, among many
others).

The data collected for this exercise are 115 macroeconomic
variables from Federal Reserve Economic Data (FRED) of
St. Louis Federal Reserve Bank website. The data originally
span the period 1959M1 to 2016M6, but the effective sample
is smaller after taking stationarity transformations and lags.
The stationarity transformations follow standard norms in this
literature (see Stock and Watson 1999) and exact details are
provided in the online appendix, Section A.

The empirical application builds on the seminal work of
Stock and Watson (1999) for forecasting inflation. These authors
specify the following benchmark forecasting model

πh
t+h − πt = φ0 + ztθ(L) + �πtγ (L) + et+h, (36)

where πh
t = (1200/h) log

(
Pt/Pt−h

)
is the h-period inflation in

the price level Pt . As Stock and Watson (1999, sec. 2) explain
in detail the assumption here is that inflation is I(1) while
the exogenous variables in zt are I(0). Two modifications of
this basic forecasting model are in order. First, as Stock and
Watson (1999) also suggest, the high-dimensional variables zt
are replaced by factors ft estimated using principal components.
Second, the forecasting equation is enhanced with TVPs and
stochastic volatility. The final forecasting model used in this
article is of the form

πh
t+h − πt = φt,0 + ftθt(L) + �πtγt(L) + et+h, (37)

where et ∼ N
(
0, σ 2

t
)

and ft is a lower-dimensional vector of
factors.

The forecasting exercise is run for two measures of inflation,
namely the consumer price index for all items (CPIAUCSL) and
the personal consumption expenditures price index (PCEPI).
The forecast horizons evaluated are h = 1, 3, 6, 12 which
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correspond to one-month, one-quarter, one-semester, and one-
year ahead forecasts, respectively. Following Bauwens et al.
(2015) evaluation of forecasts is based on the mean square
forecast error (MSFE) for point forecasts, and on the logarithm
of the average predictive likelihoods (log APL) for comparing
whole forecast densities. Exactly 50% of the sample is used for
evaluation of out-of-sample forecasts, leading to a period of
343 − h months where MSFEs and log APLs are calculated.
Note that while estimation entails the spread πh

t+h − πt , all
forecast evaluations in this section (see also alternative model
in Equation (38)) pertain to πh

t+h.
When applying the proposed GAMP estimation method-

ology, Equation (37) is estimated using two own lags of the
dependent variable, the first 20 principal component estimates
of the factors ft (updated recursively using only information
up to time t) and two lags of these factors (i.e., their values
in periods t and t − 1). As explained in the main text, this
TVP model can be estimated using GAMP by casting it into
the form (15) by setting yt = πh

t+h − πt , xt = [
1, ft , �πt

]
,

βt = (
φt,0, θt(L)′, γt(L)′

)′ and et+h = εt . Written in this
static form and using all available observations, the proposed
empirical model has nearly 30,000 regression coefficients and
another 700 volatility parameters to estimate. The only input
that the GAMP algorithm requires is choice of two scalar prior
hyperparameters. For the SBL prior of Equations (19) and (20)
these hyperparameters are set, as explained in Section 3, to the
uniform values a = b = 1×10−10. This approach to estimating
the TVP regression of (37) using GAMP is abbreviated as TVP-
GAMP in the results presented next.

The benchmark time-varying regression approach estimated
with the GAMP algorithm is contrasted against a range of pop-
ular algorithms for inference in models with many predictors
and/or stochastic variation in coefficients. The list of competing
specifications and estimation algorithms is the following:

• KP-AR: This is a structural breaks AR(2) model based on
Koop and Potter (2007). It only features an intercept and two
lags of inflation.

• GK-AR: This is a structural breaks AR(2) model based on
Giordani and Kohn (2008). It only features an intercept and
two lags of inflation.

• TVP-AR: This is a typical TVP-AR(2) model with stochastic
volatility, estimated with MCMC methods, similar to Pet-
tenuzzo and Timmermann (2017). It only features an inter-
cept and two lags of inflation.

• UCSV: The unobserved components stochastic volatility
model of Stock and Watson (2007) is a special case of a TVP
regression with no predictors—it is a local level state-space
model featuring stochastic volatility in the state equation.

• TVD: The time-varying dimension (TVD) model of Chan
et al. (2012) features an intercept, two lags of inflation, and
the first three principal components estimates of the factors.
The number of factors is restricted to three for computational
reasons. Also for computational reasons one cannot do time-
varying selection among all possible 2p models constructed
with p predictors, therefore, I follow Chan et al. (2012) and
do dynamic selection of either models with one variable at a
time, or the full model with all variables.

• TVS: The time-varying shrinkage (TVS) algorithm of Kalli
and Griffin (2014) features an intercept, two lags and the
first three principal components estimates of the factors (also
restricted to three factors for computational reasons).

• TVP-BMA: Introducing a Bayesian model averaging prior
in the TVP regression is fairly trivial as Groen, Paap, and
Ravazzollo (2013) have shown. We can use with this algo-
rithm up to 10 principal component estimates of the factors,
an intercept and two lags of inflation.

• BMA: This is a constant parameter version of the forecasting
regression specification that features the stochastic search
variable selection (SSVS) of George and McCulloch (1993).
Even though this prior can be also used for variable selection,
here it is used in a Bayesian model averaging (BMA) setting.
For this algorithm we use the same number of predictors as in
TVP-GAMP, namely an intercept, two own lags of inflation,
and two lags of the first 20 principal components. However,
this model is the only one in the comparison that does not
have TVPs.

All these models collapse to being special cases of the bench-
mark equation (37), despite the fact that different specifications
might imply various additional assumptions about how the
coefficients might evolve over time (whereas TVP-GAMP does
not rely on such additional assumptions). All models except for
the UCSV have in common an intercept and the two own lags
of inflation.12 For those algorithms that rely on shrinkage priors
(TVP-GAMP, TVD, TVS, TVP-BMA, and BMA) the intercept
and the two lags of inflation are never allowed to shrink by
using a noninformative prior on them. Therefore, whenever
shrinkage (static or dynamic) is implemented this only applies
to the exogenous information in the factors. Exact details of the
econometric specifications and prior settings associated with the
competing models is provided in the online appendix, Section
E.

A final note is on computation. All of the competing models
listed above are based on estimation using MCMC and in par-
ticular the Gibbs sampler. Most of these models were originally
developed by their respective authors for forecasting inflation.
This is due to the fact that time-varying parameter regressions
have consistently been found to be superior for this series.
However, even though one would normally expect more breaks
to be present in higher frequency monthly inflation, all of these
articles estimate their models using quarterly data. This is done
for computational reasons. Due to the fact that here these mod-
els are estimated for monthly data, I follow Bauwens et al. (2015)

12To understand better whether forecast gains can be achieved from spec-
ifying a model with many predictors, or with flexible time-variation, or
both, I only calculate direct multistep forecasts from all competing models.
That way all algorithms are used to estimate different versions of the same
regression with yt+h on the left hand side (for each h) and information
dated t or earlier on the left hand side. However, iterated forecasts can
be computed from models with no exogenous predictors (e.g., TVP-AR or
UCSV). Direct forecasts are better when the model is misspecified, while
iterated forecasting models in general result in more efficient econometric
estimates and sharper predictive densities. Examination of h = 12 month
ahead iterated forecasts from the KP-AR, GK-AR, TVP-AR, and UCSV models
reveals that these are, most times, slightly inferior to respective direct
forecasts in terms of MSFE, but they can be in some cases up to 15% better
in terms of average log predictive likelihoods. Iterated forecasting results
are not presented here, but they are available from the author.
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Table 1. Point forecast performance: MSFEs relative to AR(2) benchmark.

CPI PCE deflator

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

KP-AR 0.952 0.998 0.978 0.904 1.030 1.027 1.042 0.973
GK-AR 0.997 1.007 1.002 0.993 1.005 1.006 0.999 0.997
TVP-AR 1.009∗ 1.047∗∗∗ 1.258∗∗∗ 1.224∗∗∗ 1.053∗∗∗ 1.119∗∗∗ 1.141∗∗∗ 1.123∗∗∗
UCSV 1.032∗∗ 1.063∗∗∗ 1.286∗∗ 1.312 1.060∗∗ 1.077∗∗ 1.234∗ 1.159∗∗∗
TVD 1.014 0.988 0.942 0.919 1.091 1.108 1.156 1.029
TVS 1.146∗∗ 1.547 1.555 1.155 1.084∗ 1.413 2.150 1.208∗
BMA 0.965∗∗∗ 0.952∗∗∗ 0.883∗∗∗ 0.859∗∗∗ 0.993 0.971 0.94∗∗ 0.929∗∗∗
TVP-BMA 1.089 0.981 1.099 0.825 1.268 1.198 1.490 1.091
TVP-GAMP 0.988∗ 0.870∗∗∗ 0.749∗∗∗ 0.714∗∗∗ 1.020 0.965 0.915∗∗∗ 0.866∗∗∗

NOTE: Model acronyms are as follows: KP-AR: Koop and Potter (2007) structural breaks AR(p) model; GK-AR: Giordani and Kohn (2008) structural breaks AR(p) model; TVP-AR:
Pettenuzzo and Timmermann (2017) time-varying parameter AR(p) model; UCSV: Stock and Watson (2007) unobserved components stochastic volatility; TVD: Chan et
al. (2012) time-varying dimension regression; TVS: Kalli and Griffin (2014) time-varying sparsity regression; BMA: George and McCulloch (1993) stochastic search variable
selection regression; TVP-BMA: Groen, Paap, and Ravazzollo (2013) time-varying Bayesian model averaging model; TVP-GAMP: Shrinkage representation of time-varying
parameter regression, with generalized approximate message passing estimation.
Next to MSFE values the results of the Diebold–Mariano statistic are presented, with∗Significance at the 10% level.∗∗Significance at the 5% level.∗∗∗Significance at the 1% level.

Table 2. Density forecast performance: log APLs relative to AR(2) benchmark.

CPI PCE deflator

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

KP-AR 0.090 0.081 0.002 −0.036 0.011 0.074 −0.057 −0.035
GK-AR −0.025 −0.029 0.004 0.037 0.034 0.138 0.056 0.052
TVP-AR 0.118 0.111 0.181 0.067 0.036 0.007 −0.036 −0.029
UCSV 0.161 0.239 0.224 0.144 0.048 0.245 −0.067 0.059
TVD −0.103 −0.005 −0.339 −0.380 −0.097 0.062 −0.885 −0.262
TVS 0.018 −0.163 −0.660 −0.367 −0.001 0.003 −0.427 −0.246
BMA 0.030 −0.067 0.042 0.084 −0.056 −0.002 −0.062 0.030
TVP-BMA 0.121 0.313 0.413 0.399 −0.026 0.227 0.205 0.219
TVP-GAMP −0.204 0.258 0.320 0.321 0.061 0.260 0.045 0.191

NOTE: See notes in Table 1 for details of model acronyms.

and base inference only on 5000 samples from the posterior after
a burn-in period of 1000 draws, that is, a total of 6000 MCMC
iterations. Convergence criteria suggest that such low number
of iterations is sufficient for forecasting, even though it might
not be satisfactory for other econometric exercises. Despite the
low number of MCMC iterations, computation is quite cum-
bersome taking several hours for some models. In contrast, it
takes only minutes to run the full recursive exercise using the
TVP-GAMP model that features both time-varying parameters
and the full set of available predictors. The GAMP algorithm
not only involves simple scalar computations, but also con-
verges fairly quickly after 10–100 iterations. Once convergence
is achieved, the first two posterior moments are readily available
for further inference, rather than having to store thousands of
samples from the posterior of a high-dimensional parameter
vector.

The results from this forecasting exercise are presented in
Tables 1 and 2, and are very encouraging for the proposed TVP-
GAMP method. Table 1 shows MSFEs relative to an AR(2)
benchmark (with an intercept), such that numbers lower than
one signify better performance of a competing model relative
to that benchmark AR(2) specification. It can be seen that
under the specified regression model, point forecasts from TVP-
GAMP dominate alternatives by a substantial amount, both for
CPI and PCE inflation. The forecast gains are increasing with the
horizon. Table 2 shows the logarithm of the average predictive

likelihood (log APL), and this metric is quoted as a spread from
the log APL of the simple AR(2) specification. Positive values
signify better performance relative to the benchmark AR(2).
Using this metric, TVP-GAMP is either the top performing
model or among the top, for the four forecast horizons and the
two measures of inflation.

It is notable that these results contradict the previous claims
that time-variation in parameters is important for inflation. The
three models with the largest number of predictors, namely
BMA and TVP-GAMP, and to a lesser degree TVP-BMA, seem
to be improving a lot over time-varying parameter models with
no predictors. The results seem to suggest that information in
predictors is more important than the specification of time vari-
ation in regression parameters. This observation is not under-
mined by the fact that point forecasts from TVP-BMA are
not significant, and that density forecasts from BMA are quite
poor relative to TVP-BMA and TVP-GAMP. First, TVP-BMA
is overparameterized13 its point forecast performance is not
as good as the more conservative (in terms of time-variation
in parameters, not available number of predictors) BMA and
TVP-GAMP specifications. Second, when considering density
forecasts, BMA is definitely misspecified since it does not allow
for stochastic volatility, and it naturally does not perform as

13Shrinkage in TVP-BMA is only across predictors, but this model does not
restrict the amount of time-variation in parameters.
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Table 3. Point and density forecast performance using alternative definition of the CPI forecasting regression.

MSFE log APL

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

KP-AR 0.901 0.706 0.756 0.544 0.042 0.321 0.154 0.128
GK-AR 0.963 0.929 0.900 0.882 0.071 0.168 0.014 0.125
TVP-AR 0.852 0.917 0.800 0.587 0.210 0.353 0.422 0.114
UCSV 0.911 0.898 0.817 0.638 0.114 0.163 0.118 0.154
TVD 0.902 0.851 0.863 0.873 −0.041 0.150 0.022 0.021
TVS 0.960 0.929 0.891 0.905 0.033 0.134 0.033 0.037
BMA 0.995 1.109 1.233 0.914 0.118 0.273 0.151 0.187
TVP-BMA 0.926 0.903 0.805 0.650 0.092 0.088 0.087 0.126
TVP-GAMP 0.944 0.876 0.819 0.768 0.190 0.276 0.264 0.136

NOTE: See notes in Table 1 for details of model acronyms. Unlike the previous two tables that present results for both CPI and PCE, this table only shows results for CPI,
where its left panel focuses on MSFEs and its right panel on log APLs. However, as in the previous two tables, MSFEs and log APLs are relative to an AR(2) benchmark.
MSFE entries lower than one mean that the estimation method of the respective row does better than the benchmark. Log APL entries higher than zero mean that the
estimation method of the respective row does better than the benchmark.

well as TVP-BMA and TVP-GAMP that allow for changing
variance. Therefore, these findings suggest that TVP-GAMP
is overall the best model and that its specification is flexible
enough to capture both structural change and use information
in a large set of predictors at the same time. Most importantly,
the SBL prior allows to strike a good balance between these two
modeling characteristics by removing irrelevant predictors as
well as regularizing time variation.

These results are in stark contrast to existing results for
TVP models presented in the articles cited above (see, e.g.,
footnotes in Table 1). The culprit is simply the assumption that
inflation is I(1) that Stock and Watson (1999) introduced in
their seminal article, and that it is adopted in Equation (37).
Once the random walk dynamics are removed from inflation
(i.e., inflation gap becomes the dependent variable), the role of
time-varying parameters in forecasting becomes less important
and the most significant feature is the information included in
exogenous predictors. It would be interesting then, as a robust-
ness check, to specify the forecasting regression for inflation
using the following form

πh
t+h = φt,0 + ftθt(L) + πtμt(L) + et+h. (38)

This equation is more in line with the forecasting model esti-
mated in articles such as Chan et al. (2012), Groen, Paap, and
Ravazzollo (2013), or Pettenuzzo and Timmermann (2017).

Table 3 shows results based on this alternative specification
of Equation (38) for CPI inflation only. The left part of the table
presents MSFE results, while the right panel presents log APLs.
In this case, it is evident that the various variants of TVP models
considered improve tremendously over the benchmark. As a
matter of fact, models such as the KP-AR, TVP-AR, and UCSV
also improve a lot relative to the constant parameter BMA.
Looking at point forecasts and the associated MSFE results, we
can observe many differences among TVP models, especially
as the forecast horizon increases. For example, the structural
breaks KP-AR specification has the lowest relative MSFE for
h = 12 among all models, but also the structural breaks GK-
AR specification is among the worst performing (but still much
better than the simple AR model). TVD and TVS estimated
with the monthly data are not only cumbersome, but also do
not perform as well as TVP models with no predictors. In con-
trast, the TVP-BMA algorithm is performing quite well, even

though it still does not beat TVP models with no predictors. In
this alternative forecasting regression, TVP-GAMP is not the
top forecasting model but its performance is still quite good.
If it was not for the exceptional performance of the KP-AR
model, TVP-GAMP would have been a top model for h =
1, 3, 6.

When looking at density forecast evaluation the results might
not comply with the results for the point forecasts. Still good
performing models are the KP-AR and the TVP-AR, but now
the BMA and TVP-GAMP beat models such as the UCSV.
With such diverse set of flexible models it is hard to pin down
which exact features help in point and density forecasts. Nev-
ertheless, for the forecasting regression (38) it seems that the
way time variation in parameters is specified is more important
than information in exogenous predictors. Further numerical
evidence on the relative forecast performance of some of the
competing models, is provided in the online appendix, Section
D.2.

5. Conclusions

This article evaluates a new methodology for performing
Bayesian inference in high-dimensional regression models.
The proposed GAMP is a fast algorithm for approximating
iteratively the first two moments of the marginal posterior
distribution of a high-dimensional vector of coefficients. It
is established how effortlessly the GAMP algorithm can be
extended with interesting modeling features such as hierarchical
shrinkage priors, time-varying coefficients and stochastic
volatility, and many predictors. The benefit of the proposed
approach is demonstrated using an inflation forecasting exercise
that leads to the recursive estimation of regression models with
thousands of covariates. Due to the low algorithmic complexity,
GAMP could be generalized to much higher dimensions
with millions of predictors/covariates, as it is also trivially
parallelizable.

The current study opens up new avenues for research.
First, the proposed framework for modeling time-varying
parameters using hierarchical shrinkage priors can be extended
in interesting ways. For example, shrinkage estimators/priors
that apply on group of coefficients (such as the Group Lasso)
can be used in this setting so that coefficients are shrunk
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either in groups of predictors for a given time period or
in groups of consecutive time periods for a given predictor.
This is because in the TVP setting the vector of regression
coefficients β has elements that correspond both to predictor
j, j = 1, . . . , p, but also to time period t, t = 1, . . . , T.
One can think of other shrinkage priors in order to perform
a more structured approach to uncovering patterns of time-
variation in parameters, such as various pooling priors used
in the panel data literature. Finally, the article proposes the
framework of factor graphs for designing efficient algorithms.
Many macroeconomic problems currently do not typically
involve extensive use of Big Data sets, however, they involve
multivariate models with possibly thousands of coefficients,
such as VAR, factor, and DSGE models. Bayesian estimation
of these models is quite cumbersome, many times relying on
linear or nonlinear state-space methods. As empirical macroe-
conomic models become larger and more complex, factor
graph inference could help economists come up with novel
efficient algorithms and unveil new features in macroeconomic
data.

Supplementary Materials

This article is accompanied by an Online Appendix and replication codes
for all the quantitative results presented in the main article and the
Appendix. The Online Appendix includes description of data; proofs,
derivations, and exact computational details of the algorithm proposed
in the article; extensive Monte Carlo comparisons; and further empirical
results. The accompanying replication files are written in MATLAB, and
they can also be accessed on the Author’s personal website, https://sites.
google.com/site/dimitriskorobilis/.
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